
Chapter 4
Optical Modulation and Coding

Samuel J. Dolinar, Jon Hamkins, Bruce E. Moision, and Victor A. Vilnrotter

4.1 Introduction
It can be argued that optical communications had its origins in ancient times,

where modulated sunlight was often used to convey information over large dis-
tances. For example, mirrors have been used to create bright flashes of light in
certain directions, producing a form of on–off modulation. Similarly, blankets
used to cover a signal fire periodically produced puffs of smoke that could be
seen for miles in the clear desert air, producing, in effect, a modulated signal. In
modern times, navies throughout the world used bright incandescent light sources
directed by a reflector and blanked by a manual shutter to send messages between
ships often kilometers apart on the high seas. Before the invention of the laser,
long-range optical communication was envisioned using bright flashes of light
produced by intense pulses of electric current passing through an incandescent
fiber placed in the focal-plane of an optical reflector. Even exploding wires that
generated bursts of intense optical energy were considered for long-range appli-
cations. However, these sources were not effective in the production of intense,
highly directional optical energy that could also be modulated at high enough
data-rates to be seriously considered for deep-space optical communications.

The invention of the laser by Schawlow, Townes and Maiman [1,2] ushered
in the era of deep-space optical communications. Here was a source of intense,
highly directed optical energy that could produce coherent radiation, like radio
frequency (RF) transmitters, but at much higher optical wavelengths. Because
of its short wavelength the optical beam produced by a laser could be highly con-
centrated in the desired direction, constrained only by diffraction effects imposed
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by the finite extent of the transmitter aperture. Therefore, much higher concen-
trations of signal energy could be delivered to a distant receiver than with radio
frequencies, suggesting the potential for communicating at higher data rates for
a given amount of expanded power. No longer are optical communications all
smoke and mirrors!

It was quickly realized that lasers enabled a new type of modulation for-
mat that was not practical at radio frequencies, namely, intensity modulation.
The same phase-coherent modulation techniques developed for radio frequencies
could still be employed with lasers, but the potential of intensity modulation
promised additional choices. This new capability is a direct result of the rela-
tively high energy of optical photons, enabling the detection of individual pho-
tons at optical wavelengths, which is much more difficult at radio frequencies.
Optical frequencies stand at a nexus of the frequency spectrum where both wave
and particle views of light are useful concepts.

Varying the intensity of the laser suggests the use of on–off modulation
concepts reminiscent of earlier attempts with solar radiation and incandescent
sources, but potentially at a much higher rate. Surprisingly, it has been found [3]
that relying entirely on the energy in the signal and ignoring the coherence of
the radiation does not fundamentally limit the rate at which information can be
transferred reliably over the noiseless optical channel.

In the particle view of light, one can naively imagine using individual pho-
tons of light to carry information. For example, to communicate one bit of
information, simply transmit one photon or not, depending on the value of the
bit. This would be intensity modulation carried to its most granular extreme. If
the information bits were equally likely 0 or 1, and if all photons were noiselessly
detectable, this scheme would achieve an average photon efficiency of two bits
per photon.

Optical photons do not behave exactly as classical particles, and correct
quantum mechanical models are needed to describe their generation, modulation,
and detection. However, the particle view of light is still a very useful concept for
interpreting the efficiencies of optical modulations. Practical optical modulations
can communicate information at reasonable fidelity with efficiencies ranging from
a handful of bits per (detected) photon to a handful of (detected) photons per
bit.

In this chapter, we discuss modulation and coding for the optical communi-
cations channel. For this purpose, the optical communications channel may be
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reduced to the block diagram of Fig. 4-1. User information, denoted U , is first
encoded by an error correction code (ECC), mapping user bits to code bits C.
The ECC introduces redundant information into the message to aid in correcting
errors in the received signal. The code bits are passed though a modulator, which
maps the coded bits to symbols X. The set of symbols represents the distinct
messages the laser will transmit. For example, the symbols could be distinct
phase, polarization, wavelength, or amplitudes of the optical carrier. These
symbols are transmitted over the noisy optical channel, detected and received as
noisy versions Y . The process of encoding and modulation is then inverted by
the demodulator and decoder. The demodulator takes the noisy received signal
and produces estimates of the transmitted symbols X̂, or the code symbols Ĉ,
or both. The decoder operates on these estimates to yield estimates of the user
information Û . In modern modulation and coding design, demodulation and
decoding are executed iteratively, illustrated in Fig. 4-l by a pair of directed
arrows, passing revised estimates back and forth until the two reach agreement.

In addition to the throughput of the optical communications link, measured
in bits/second, we are interested in a measure of its efficiency–a measure of
how well we are using the available resources to achieve a desired throughput.
A commonly used measure is the photon efficiency ρ, the number of user bits
transmitted per signal photon [3,4]. As in [7], the throughput, R, can be written
as the product of the photon efficiency and the average signal photons received
per second, ns:

R = ρns bits/second (4.1 1)

The usefulness of Eq. (4.1-1) stems from the fact that it separates the com-
munications problem into two parts that can often be treated independently:
one relating to the generation and transmission of photons, and one relating to
modulation and coding. In cases such that ρ depends only on the modulation
and coding and ns depends only on the characteristics of the laser, the data-
rate R can be maximized for a given photon rate by maximizing ρ, subject to
constraints imposed by bandwidth, peak power, and other limitations of the re-
ceiving and transmitting equipment. This interpretation is valid for a large class
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Fig. 4-1.  The optimal communications channel.
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of modulations, namely those that do not reduce the average photon rate at the
receiver: examples include all lossless modulation formats such as phase, polar-
ization, wavelength, and all rate-conserving intensity modulations. However, a
decoupled model is often not valid. In practical intensity-modulated systems,
the average amount of energy used by the laser-modulator may be a function of
the timetable selected by the modulator for transmitting photons. This coupling
of the characteristics of the laser and the modulator can destroy the separability
of parameters expressed in Eq. (4.1-1). If it is found that while maximizing ρ a
point is reached where further increases in ρ begin to reduce ns, thus violating the
independence assumption, then it becomes necessary to consider both ρ and ns

together when attempting to maximize R. In any case, it is clear that high rates
of information transfer between transmitter and receiver require modulation and
coding schemes capable of high information efficiencies. A thorough description
of the generation, detection, and evaluation of efficient modulation and coding
schemes capable of operating reliably with high information efficiencies is the
subject of the rest of this chapter.

The sections of this chapter each discuss one or more components of
Fig. 4-1, working roughly in order of dependence, starting with Section 4.2,
which addresses the channel model. In Section 4.2, we discuss the quantum rep-
resentation of optical fields and models for optical transmission and detection.
This results in various statistical characterizations of a detected optical signal
at the receiver. These models are the required starting point for the analysis
and selection of appropriate modulation and coding, as well as determining the
fundamental limits of communication with the optical channel.

Sections 4.3 and 4.4 address modulation. Section 4.3 discusses various com-
mon optical modulation schemes. Section 4.4 shows how these common optical
modulations can be placed in a unified framework as cases of constrained on–off
keying. This framework is used to introduce practical physical constraints on the
modulation and analyze their impact. Section 4.5 addresses the performance of
the demodulator, analyzing the performance of the uncoded modulation schemes
on various channel models.

In Section 4.6 we determine channel capacity limits for the channel models
developed in Section 4.2 when used with the modulation formats discussed in
Section 4.3. The channel capacity yields bounds on the rate of information
transmission as a function of the available physical resources subject to a fidelity
criteria, e.g., the maximum bits per second achievable with a given average laser
power and probability of error of 10−6. We address physical constraints such
as average power, peak power, bandwidth, and decision method at the detector
(hard decision versus soft decision).
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Section 4.7 discusses various types of channel codes that may be used to
encode the user data. Finally, with all the pieces in place, in Section 4.8 we
illustrate the performance of the coded modulation schemes on optical channel
models, comparing performance to the theoretical capacity limits.

4.2 Statistical Models for the Detected Optical Field
In optical systems the statistical nature of the channel output depends on

the detection method. At the receiver, light is focused onto a detector. There are
two popular methods for detecting the received optical field. The first method,
called direct detection, allows the received field to impinge directly upon the
photodetector, which responds to its energy, i.e., to the squared magnitude of
the incident optical field. Direct detection is non-coherent detection because any
information in the phase of the received signal is lost. The second method, called
coherent detection, adds a strong local optical field to the received field prior to
photodetection.

In either case, the detector output may be either discrete or continuous. In
most practical detectors—including photo-multiplier tubes (PMTs), avalanche
photo-diode (APD) detectors, and PIN diode detectors—the output is a real-
valued voltage or current that arises from the detector input as well as from
random processes within the detector and follow-on circuitry.

In this section we give a brief formulation of the quantum optical field, and
the resulting statistical models of the received optical signal when it is detected
coherently or non-coherently.

4.2.1 Quantum Models of the Optical Field

Unlike familiar RF systems, optical systems often operate in regimes where
the communication performance is susceptible to the fundamental measurement
uncertainties implied by quantum theory. This observation has two ramifica-
tions for analyzing optical systems. First, mathematical models that accurately
describe physically realizable optical fields and optical detectors must be firmly
rooted in quantum theory. Second, the quantum theory permits additional ab-
stract measurements formulated as mathematical operators in a Hilbert space
that may in principle outperform the more conventional measurements that can
be implemented by direct detection or coherent detection. Considerable atten-
tion in the literature [3,5] has been devoted to formulating and analyzing optical
communications problems in abstract quantum Hilbert spaces.

The performance of some communications systems is ultimately limited
by thermal noise entering the receiver along with the signal. This idea can



220 Chapter 4

be illustrated with Shannon’s capacity formula for bandlimited classical chan-
nels, according to which error-free communication is possible at rates less than
W log2(1+ [S/N ]) bits per second (bps) [6], where W is the bandwidth in hertz,
S is the average signal power, and N is the power of additive thermal noise. The
above expression shows that if there is no thermal noise, then error-free com-
munication should be possible at arbitrarily high rates, even with bandlimited
channels. However, the Shannon formulation implicitly assumes that arbitrarily
precise measurements are possible, since if this were not the case then there would
have to be an effective noise term associated with the noisy signal measurements
in the denominator of the capacity expression in addition to the thermal noise,
and hence the denominator would never actually approach zero.

The classical model assumes that deterministic signals are observed in the
presence of additive Gaussian noise. This model is perfectly adequate for de-
scribing communications systems operating at radio frequencies, where quantum
effects are not readily detectable. However, at optical frequencies quantum ef-
fects tend to be the dominant source of error, and therefore must be considered
in the communications system model. The approach most consistent with the
principles of quantum mechanics starts out by quantizing the received electro-
magnetic field, and seeks to determine those measurements on the received field
that achieve the best results such as, for example, minimizing the average prob-
ability of detection error. The best measurements may not be readily realizable
with physically available devices; however, it is often possible to determine the
performance of the “quantum optimum” receiver analytically. Therefore, if these
measurements could somehow be made and incorporated into a communications
receiver, the performance of the “quantum optimum” receiver would represent
the achievable limit on communications system performance consistent with the
principles of quantum mechanics.

Another approach for evaluating optical communications systems assumes a
classical instead of a quantized received field, but models the response of phys-
ically realizable detectors using the same statistics that a quantum mechanical
model would provide [7]. This “quantum mechanically correct” detector response
is then used as the fundamental observable on which the decisions are based.
Receivers using this approach are often called “semi-classical” and have the ad-
vantage of employing well-known detection techniques; however, such receivers
generally cannot match the performance of the optimum quantum receiver.

4.2.1.1 Quantization of the Electric Field. The application of detection
theory to a quantum mechanical model of the aperture field was originally devel-
oped by Helstrom and summarized in the IEEE Proceedings article “Quantum
Mechanical Communications Theory” [5], as well as the subsequent monograph
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Quantum Detection and Estimation Theory, Mathematics in Science and En-
gineering and the references therein [3]. This section relies heavily on results
presented therein and on the numerous references cited in these publications. A
detailed derivation of quantum communication theory is beyond the scope of this
chapter; therefore, we concentrate on summarizing key results, with a minimum
of discussion and derivation.

The receiver in a quantum optical communications system is often mod-
eled as a large cubical box of volume V , with perfectly conducting walls [5].
The received field is admitted into this box, or cavity, through a receiving aper-
ture assumed normal to the direction of propagation, during the time interval
(0,T ). After this time the aperture is closed, and measurements are made on
the “received field” inside the cavity. The received field can be represented as a
superposition of normal modes of the cavity, where each mode behaves much like
a harmonic oscillator with radian frequency ωk. The classical waveform ε(r, t)
can be expanded in terms of standing-wave normal mode functions uk(r) within
the cavity as [3,5]

ε(r, t) = −ε
−1/2
0

∑
k

pk(t) uk(r) (4.2 1)

where ε0 is the dielectric constant for free space, and pk(t) and uk(r) describe
the temporal and spatial variation of the kth field mode, respectively. If the
received field is represented in terms of plane-wave mode functions (instead of
standing waves), the spatial variation of each mode takes the form

uk(r) = V −1/2 ek exp(ik · r) (4.2 2)

where k is the propagation vector and ek is a unit polarization vector perpen-
dicular to k. The complex amplitude αk(t) of each traveling-wave mode can be
expressed as

αk(t) = αk exp(− i ωkt) (4.2 3)

In the quantum formulation, the coordinates and momenta of the harmonic
oscillators are replaced by the corresponding operators Qk(t) and Pk(t), while
the complex amplitudes are replaced by the operators ak. The operator a+

k ak is
called the “number operator” because its eigenvectors are the “number states”
denoted by the ket |n 〉, and its eigenvalues are the non-negative integers:
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a+
k ak|nk 〉 = nk|nk 〉 (4.2 4)

The operator ak converts the eigenvector |nk 〉 to |nk − 1〉, whereas the operator
a+

k converts |nk 〉 to |nk + 1〉: for this reason, these operators are often called
“annihilation” and “creation” operators.

The electric field operator can be expressed in terms of the annihilation and
creation operators [3,5] as

E(r, t) = i
∑

k

h̄ωk√
2ε0V

ek

{
ak exp[−i (ωkt − k · r] − a+

k exp[i (ωkt − k · r)
}

(4.2 5)

4.2.1.2 The Coherent State Representation of a Single Field Mode.
When the k-th mode of the electric field is in a state that is the right eigenvector
of the annihilation operator, ak|αk 〉 = αk|αk 〉, it is said to be in a coherent
state. The coherent states are denoted by kets |αk 〉, and can be expressed in
terms of the number eigenstates as [8,9]

|αk 〉 = exp[−|αk|2/2]
∞∑

nk=0

(nk!)−1/2 αnk

k |nk 〉 (4.2 6)

The coherent states are normalized so that 〈αk|αk 〉 = 1. The overlap be-
tween two coherent states, |αk 〉 and |βk 〉 is not zero; hence, the coherent states
are not orthogonal. Denoting the average number of photons in the k-th normal
mode by Ksk ≡ |αk|2, the probability that n photons are contained in that mode
can be found as

Pr(n) = |〈n|αk 〉|2 = Kn
sk exp[−Ksk]/n! (4.2 7)

which is recognized as the Poisson probability mass function (pmf).

Although the coherent states are not orthogonal, they are complete, and
hence can be used to expand a large class of density operators, including those
of interest in communication theory, as follows [3,5,9]:

ρ =
∫

P (αk)
∏
k

|αk 〉 〈αk| d2αk (4.2 8)
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An expansion of this form is called the P representation, where P ({αk})is
called the weight function. The P representation will be used to describe the
density operators of fields consisting of thermal noise, and signal plus thermal
noise, in the following development.

4.2.1.3 Quantum Representation of Thermal Noise. When the field in-
side the cavity consists of thermal radiation alone, in equilibrium with the cavity
at an absolute temperature of Tth kelvins, the density operator describing the
state of the k-th normal mode can be expressed in terms of the P representation
as [3,5,9]

ρk = (πKk)−1/2

∫
exp[−|α|2/Kk]|α〉〈α|d2α (4.2 9)

where Kk is the average number of photons in the k-th mode. Making use of
the number-state expansion of the coherent states in Eq. (4.2-6), this density
operator can also be expressed in terms of the number states as

ρk =
∞∑

nk=0

(1 − vk) vnk

k |nk 〉 〈nk| (4.2 10)

where vk = Kk/(Kk + 1). Note that this density operator is diagonal in the
number representation. The probability of finding a given number of photons in
the kth mode is simply

Pr(n) = 〈n|ρ|n 〉 =
∞∑

nk=0

(1 − vk) vnk

k 〈n|nk 〉 〈nk|n 〉 = (1 − vk) vn
k (4.2 11)

which is recognized as a Bose–Einstein probability. In the classical limit, when
the inequality κT � h̄ ωk holds (here κ is Boltzmann’s constant), the weight
function of the k-th mode becomes

P (αk) = (πKk)−1/2 exp[−|αk|2/Kk] (4.2 12)

This is recognized as a Gaussian probability density, representing the probability
density of the complex envelope of the kth normal mode.

4.2.1.4 Quantum Representation of Signal Plus Thermal Noise. When
the received field mode contains both thermal noise and a coherent-state signal
component |µk 〉, the density operator is of the form
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ρk = (πKk)−1/2

∫
exp[−|α − µk|2/Kk]|α〉〈α|d2α (4.2 13)

This density operator can also be expressed in terms of number states, as
shown in [3,5]. With the number state representation, this density operator can
be interpreted as an infinite-dimensional matrix with elements

〈n|ρk|m〉 = (1 − vk)

√
n!
m!

vm
k

(
µ∗

k

Kk

)m−n

e−(1−vk)|µk|2Lm−n
n

[−(1 − vk)2|µk|2
vk

]
(4.2 14)

where Lm−n
n (x) is the generalized Laguerre polynomial. If no attempt is made

to maintain coherence between the transmitter and the receiver, the density
operator must be averaged with respect to phase. If the phase is taken to be
uniformly distributed between (0, 2π), the averaged density operator ρ̄k becomes
diagonal in the number representation:

ρ̄k =
∞∑

k=0

(1 − vk) vn
k exp[− (1 − vk)Ksk] Ln[−(1 − vk)2Ksk/vk] |nk 〉 〈nk|

(4.2 15)

where Ln(x) is the ordinary Laguerre polynomial, and Ksk ≡ |µk|2 is the average
number of signal photons in the normal mode. As before, the probability of
obtaining exactly n photons can be found as

Pr(n) = 〈n|ρ̄k|n 〉 = (1 − vk) vn
k exp[− (1 − vk)Ksk] Ln[−(1 − vk)2Ksk/vk]

(4.2 16)

This is recognized as specifying the well-known Laguerre probabilities for the
number of photons in a mode containing both signal fields and noise fields of
thermal origin.

4.2.2 Statistical Models for Direct Detection

From a communications systems perspective, it is often convenient to state
the various stochastic properties for each detection method in terms of a com-
mon framework. For many of the modulations and classical detection methods
considered in this chapter, this may be done with the general binary-input dis-
crete time channel model shown in Fig. 4-2. This model can be used for a direct
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4.2.2.1.2 Limiting Form of Thermal Noise Fields. Thermal noise fields,
and combinations of coherent signal and thermal noise fields, also generate ap-
proximate Poisson-distributed random variables at the output of an ideal pho-
ton counter, under certain limiting conditions. Whereas the number of photons,
hence the modal count, for a single mode of thermal radiation is Bose–Einstein
distributed as shown in Eq. (4.2-11), the count distribution for thermal light fil-
tered by a narrowband rectangular optical filter of bandwidth W Hz around the
optical carrier frequency, and observed for T seconds, is given by the negative
binomial density [7]

Pr(k) =
(

k + WT − 1
WT − 1

)
(1 − v)WT vk (4.2 19)

where v = N/(N + 1), and N is the average number of photons in a single
mode of the thermal field. If the time-bandwidth product approaches infinity,
W T → ∞, and at the same time N decreases such that NWT remains constant,
the distribution for the total number of photons approaches the Poisson limit:

fY |X(k|x = 0) = lim
WT→∞
NWT=c

Pr(k) =
Kk

b e−Kb

k!
(4.2 20)

where Kb is the sum of the average numbers of modal background photon counts.
This can be extended to the case of signal plus thermal noise: Kb is replaced by
Ks + Kb in Eq. (4.2-20) when x = 1, as shown in [7].

4.2.2.2 The McIntyre–Conradi Model for APD Detectors. The average
number of photons absorbed over the active surface of an APD illuminated with
optical power P (t) in T seconds can be expressed as [32]

K =
η

hν

∫ T

0

P (t) dt (4.2 21)

where h is Planck’s constant, ν is the optical frequency, and η is the detector’s
quantum efficiency, defined as the average number of photons absorbed by the
APD’s photosensitive surface divided by the average number of incident photons.
The actual number of absorbed photons is a Poisson-distributed random variable
with mean K (where K = Kb or K = Ks +Kb, as in Eqs. (4.2-17) and (4.2-18)).

In an APD, the density of the output electrons in response to absorbed
photons was modeled accurately by McIntyre [40] and verified experimentally
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4.2.2.1.2 Limiting Form of Thermal Noise Fields. Thermal noise fields,
and combinations of coherent signal and thermal noise fields, also generate ap-
proximate Poisson-distributed random variables at the output of an ideal pho-
ton counter, under certain limiting conditions. Whereas the number of photons,
hence the modal count, for a single mode of thermal radiation is Bose–Einstein
distributed as shown in Eq. (4.2-11), the count distribution for thermal light fil-
tered by a narrowband rectangular optical filter of bandwidth W Hz around the
optical carrier frequency, and observed for T seconds, is given by the generalized
Bose–Einstein density [7]

Pr(k) =
(

k + WT − 1
WT − 1

)
(1 − v)WT vk (4.2 19)

where v = K/(K + 1), and K is the average number of photons in a single
mode of the thermal field. If the time-bandwidth product approaches infinity,
W T → ∞, and at the same time K decreases such that KWT remains constant,
the distribution for the total number of photons approaches the Poisson limit:

fY |X(k|x) = lim
WT→∞
KWT=c

Pr(k) =
Kke−K

k!
(4.2 20)

where c is a constant and K is the sum of the average number of modal photon
counts, i.e., K = Kb when x = 0 and K = Ks + Kb when x = 1.

4.2.2.2 The McIntyre–Conradi Model for APD Detectors. The average
number of photons absorbed over the active surface of an APD illuminated with
optical power P (t) in T seconds can be expressed as [32]

K =
η

hν

∫ T

0

P (t) dt (4.2 21)

where h is Planck’s constant, ν is the optical frequency, and η is the detector’s
quantum efficiency, defined as the average number of photons absorbed by the
APD’s photosensitive surface divided by the average number of incident photons.
The actual number of absorbed photons, call it N , is a Poisson-distributed ran-
dom variable with mean K (where K = Kb or K = Ks + Kb, as in Eqs. (4.2-17)
and (4.2-18)).

In an APD, the density of the output electrons in response to absorbed
photons was modeled accurately by McIntyre [40] and verified experimentally
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by Conradi [40]. We refer to it as the McIntyre–Conradi distribution. The
conditional density of obtaining k electrons at the APD output in response to
N = n absorbed photons is given by

fY |N (k|n) =
nΓ

(
k

1 − keff
+ 1

)
k(k − n)!Γ

(
keffk

1 − keff
+ n + 1

) [
1 + keff (G − 1)

G

]n+keff k

1−keff

×
[
(1 − keff )(G − 1)

G

]k−n

(4.2 22)

where G is the average gain of the APD, and keff is the ionization ratio, 0 <

keff < 1, a property of the semiconductor. Averaging Eq. (4.2-22) over the
number of absorbed photons, n, yields

fY (k) =
k∑

n=1

fY |N (k|n)
Kn

n!
e−K , k ≥ 1 (4.2 23)

where the summation limit is k instead of infinity because according to the
model there can never be more absorbed photons than released electrons. Thus,
for k ∈ NN (where NN is the set of natural numbers),

fY |X(k|x) =
k∑

n=1

nΓ
(

k

1 − keff
+ 1

) [
1 + keff (G − 1)

G

]n+keff k

1−keff

Kn
x e−Kx

k(k − n)!Γ
(

keffk

1 − keff
+ n + 1

)
n!

×
[
(1 − keff )(G − 1)

G

]k−n

(4.2 24)

where K0 = Kb is the average number of photons detected when x = 0 and
K1 = Ks + Kb is the average number of photons detected when x = 1. In
determining K for an APD, there are some subtleties to Eq. (4.2-21) that should
be noted. The APD bulk leakage current, Ib, is multiplied by the APD gain
and can be modeled artificially as part of the background optical power P (t)
entering the telescope, even when no actual background light is present. The
APD surface leakage current, Is, is not multiplied by the APD gain and can be
modeled as a direct current (DC) at the output.
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4.2.2.3 The Webb, McIntyre, and Conradi Approximation to the
McIntyre–Conradi Model. An approximation to Eq. (4.2-24) that is sim-
pler to evaluate has been derived by Webb, McIntyre, and Conradi [41], which
we refer to as the WMC density, and is given by the continuous conditional
density function

fY |X(y|x) =
1√

2πKG2F

(
1 +

(y − GK)(F − 1)
KGF

)−3/2

× exp

⎛
⎜⎜⎝ −(y − GK)2

2KG2F

(
1 +

(y − GK)(F − 1)
KGF

)
⎞
⎟⎟⎠ (4.2 25)

for y ≥ K, where the excess noise factor, F , is defined as F = keffG +
(2 − [1/G]) (1 − keff ). Unfortunately, the constraint y ≥ K causes this to be
an invalid density function–it does not integrate to one. If we extend the do-
main artificially, this difficulty is avoided. Denoting the zero-mean, unit-variance
WMC probability density function (pdf) (with valid domain indicated) by

pw(y; δ) =
1√
2π

(1 + y/δ)−3/2 exp
[ −y2

2(1 + y/δ)

]
, y > −δ (4.2 26)

the conditional density at the output of an APD can be written as

fY |X(y|x) =
1
σx

pw

(
y − mx

σx
; δx

)
(4.2 27)

where x ∈ {0, 1}, mx = KxG, σ2
x = KxG2F , δ2

x = KxF/(F − 1)2, K0 = Kb, and
K1 = Ks + Kb.

Unlike a Gaussian distribution, the WMC distribution is not determined
solely by its mean and variance; it also depends on the “skewness” parameter
δ. As δ → ∞, the WMC distribution reduces to the normal distribution, as
illustrated in Fig. 4-3. However, the model does not allow independently varying
skewness and variance parameters. Both the skewness and variance are signal
dependent, being proportional to the average number of absorbed photons, Kx.
Thus, this model imposes the constraint σ0/σ1 = δ0/δ1. We shall use this
constraint for the WMC channel in the remainder of this chapter.
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Fig. 4-3.  The standardized WMC pdf, for various   .
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4.2.2.4 The WMC Plus Gaussian Approximation. In addition to the
avalanche electrons produced by the APD, the follow-on amplifier and resistance
within the follow-on electronics also generate electrons of thermal origin, which
can be taken into account [42]. That is, the detector output Y is the sum of the
McIntyre–Conradi component, with the conditional density function given by
Eq. (4.2-24) and an independent normal (Gaussian) component with zero mean
and variance σ2

n. If we use the WMC density in Eq. (4.2-27) to approximate
Eq. (4.2-24), the WMC plus Gaussian conditional probability density function
becomes

fY |X(y|x) =
∫ ∞

mx−δxσx

1
σn

φ

(
y − z

σn

)
︸ ︷︷ ︸

Gaussian pdf at y−z

· 1
σx

pw

(
z − mx

σx
; δx

)
︸ ︷︷ ︸

WMC pdf at z

dz

where again x ∈ {0, 1} indicates the condition that either a 0 or a 1 was sent,
and φ(x) is the normal density, φ(x) = 1/

√
2πe−x2/2.

4.2.2.5 Additive White Gaussian Noise Approximation. Under cer-
tain conditions, the additive white Gaussian noise (AWGN) channel model can
be used to model direct detection [42], and it is a model that has been used
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in free-space optical communications link budget software at NASA [34]. The
conditional pdf at the output of the channel is given by

fY |X(y|x) =
1
σx

φ

(
y − mx

σx

)
=

1√
2πσ2

x

e−(x−mx)2/2σ2
x (4.2 28)

where x ∈ {0, 1}, and mx and σ2
x are the mean and variance, respectively, when

X = x. This model is often only an approximation, and it may over- or under-
estimate error probabilities [49,50]. In this subsection, we discuss several ways
in which this model may arise.

4.2.2.5.1 AWGN Approximation for an APD. The probability density
of Y is approximately Gaussian when operating under high background condi-
tions, and in the presence of additive Gaussian noise [49–51]. In this case, the
conditional density is given by Eq. (4.2-28), with [51]

m0 = G Kb + IsTs/q (4.2 29)

m1 = G(Ks + Kb) + IsTs/q (4.2 30)

σ2
0 =

[
G2FKb +

IsTs

q
+

2κTTs

q2RL

]
2BTs (4.2 31)

σ2
1 =

[
G2F (Ks + Kb) +

IsTs

q
+

2κTTs

q2RL

]
2BTs (4.2 32)

where G is the average APD gain, Kb and Ks are the average number of absorbed
background and signal photons, respectively, Is is the surface leakage current of
the APD, Ts is the slot width, and q is the electron charge. The other parameters
are the “excess noise” factor of the APD F , the equivalent noise temperature of
the device T , the Boltzmann’s constant κ. The noise bandwidth B is assumed
to be matched to the slot duration as B = 1/2Ts. As mentioned earlier, the
bulk dark current of the APD, Ib, can be artificially modeled as part of the
background radiation, by absorbing the quantity Ib/q into Kb.

4.2.2.5.2 AWGN Approximation for the Ideal PMT. The conditional
probability density of the output voltage Y , given X, of a PMT can be expressed
as the sum of conditional densities representing the output voltage for a given
number of absorbed photons, n:
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fY |X(y|x) =
∞∑

n=0

fY |N (y|n)fN |X(n|x) (4.2 33)

where fN |X(n|x) is a Poisson-probability mass function with mean Kb when
x = 0 and mean Ks + Kb when x = 1. The conditional density of the output
voltage may be modeled as Gaussian [32]:

fY |N (y|n) = φ

(
y − Gn

σ

)
(4.2 34)

where G is the average gain of the PMT and σ = ξGn, where ξ is the spreading
factor of the PMT [32].

During daytime operation, or with a bright planet (Mars) in the field of view,
the Poisson-distributed number of absorbed photons, N , can be much greater
than one, which justifies a continuous approximation. A Gaussian approximation
of fN |X(n|x) may be made [52], making Eq. (4.2-33) a sum of Gaussians, and
hence Gaussian as well:

fY |X(y|x) = φ

(
y − GN̄x

σx

)
(4.2 35)

where σx = ξGN̄x, with Nx = Kb when x = 0 and Nx = Ks + Kb when x = 1.

4.2.3 Summary of Statistical Models

Table 4-1 lists the conditional density (or mass) function fY |X(y|x) associ-
ated with each model discussed earlier in this section. In each case, m0 and σ2

0

denote the mean and variance conditioned on X = 0 (see Fig. 4-2), and m1 and
σ2

1 denote the corresponding quantities conditioned on X = 1. We define the
slot signal-to-noise ratio (SNR) as β = (m1 − m0)2/σ2

0 , the “excess SNR” as
γ = (m1 −m0)2/(σ2

1 −σ2
0), and the “bit SNR” as βb = β/(2Rc), where Rc is the

number of bits per symbol.

4.3 Modulation Formats
Optical direct detection effectively measures the energy in the optical sig-

nal impinging on the detector. Since direct detection does not respond to
phase, but is capable of distinguishing only between different intensity levels,
intensity modulation is required. The most common forms of digital intensity
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modulation are on–off keying (OOK) and pulse-position modulation (PPM). In
addition, wavelength modulation (WM) and pulse intensity modulation (PIM)
can also be envisioned to increase the information throughput, but have not
achieved the level of acceptance enjoyed by OOK and PPM. Wavelength modu-
lation is a form of spatial PPM, hence its performance can be determined directly
from PPM detection. Therefore, we shall concentrate on these modulation for-
mats here, and only briefly describe other schemes.

Most of the common modulation formats suitable for direct detection can be
decomposed into a simple binary on–off “pulsed” form of modulation. At a given
wavelength or during a given period of time an optical pulse is either present
or absent. The simplest of these is binary OOK, for which each modulated bit
consists of one of these on–off pulses. More complex pulsed modulations, such
as PPM, can be conceptually regarded as coded versions of binary OOK, as
discussed in Section 4.4.

Coherent reception can be used with any pulsed modulation such as PPM,
but additionally there are many non-pulsed modulations suitable for coherent
reception. Examples include M -ary phase shift keying (M -PSK) and M -ary
quadrature amplitude modulation (M -QAM), i.e., the whole suite of modulations
used for coherent RF communication.

Pulsed modulations, such as OOK and PPM, share a common characteristic
that the laser is either “on” or “off” during every slot time interval. Similarly, for
wavelength-shift keying (WSK) laser energy is either present or absent in each
frequency slot. Any such modulation can be conveniently regarded as a mapping
from a binary sequence of 0’s and 1’s into a discrete set of optical pulses. A pulse
is present in the ith slot if the ith bit is a 1, and the pulse is absent if the ith
bit is a 0.

Pulsed modulations can be decomposed into a coded sequence of binary
OOK pulses. Each pulsed modulation format, such as PPM, differential pulse-
position modulation (DPPM), etc., simply imposes a different set of constraints
on the binary coded sequence. For example, the coded sequences for M -ary PPM
are the M binary sequences of length M containing exactly one 1 bit and M − 1
0 bits.

4.3.1 On–Off Keying (OOK)

With on–off keying, binary data is represented by the presence or absence
of a single light pulse in each T -second symbol interval. The binary information
sequence can be mapped directly to a sequence of light pulses at the transmitter
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according to the rule: if the information bit is 1, transmit a laser pulse; if it is 0,
transmit nothing. Therefore, there is a one-to-one correspondence between 1’s
in the data-stream, and the occurrence of light pulses emanating from the trans-
mitter. This is illustrated in Fig. 4-4. For comparison with other modulation
schemes that use more than one slot per bit, alternate symbols are shaded.

4.3.2 Pulse-Position Modulation (PPM)

Optical PPM is well suited to existing laser modulation techniques (such as
Q-switching, mode-locking, and cavity-dumping), requires low average power,
attains reasonably high information efficiencies, and is resistant to background
radiation.

A k-bit source U = (U1, · · · , Uk) ∈ {0, 1}k is modulated with M -ary PPM,
M = 2k, to yield a signal X = (0, . . . , 0, 1, 0, . . . , 0) ∈ {0, 1}M , which contains
a single one in the position indicated by the binary representation of U. The
transmission channel is a binary-input unconstrained-output memoryless channel
(X = 0 or 1 in Fig. 4-5). One use of the overall PPM-symbol channel consists
of M serial uses of the binary-input channel, and it produces the received vector
Y = (Y1, · · ·YM ) ∈ RRM This is illustrated in Fig. 4-6.

Fig. 4-4.  OOK uses one slot 

per bit.  Modulation of mess-

age 101001 is shown.

Fig. 4-5. 8-PPM uses an eight slot symbol for each three bits. Modulation of 

message 101001 is shown.  The order in which slots are labeled is not 

consequential; here, label 7 is assigned to the left-most slot of a symbol, and 

label 0 is assigned to the right-most slot.

7 6 4 3 2 1 7 5 30 6 4 2 015

Fig. 4-6.  PPM signaling.
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This modulation format consists of a fixed number of symbols, M , of equal
duration, T seconds. Assuming for convenience that M is a power of two,
M = 2L, and recalling that the number of bits of information contained in a
PPM symbol is log2 M , we can view the mapping from information-bits to PPM
symbols as a one-to-one assignment of symbols to each of L consecutive informa-
tion bits. To illustrate, consider the following sequences of L = 4 information bits
and a particular mapping of a PPM pulse into one of M = 2L possible time-slots.
Suppose each consecutive L-bit information sequence is mapped into a unique
PPM symbol according to the rule, “1 plus the numerical value of the sequence,
when the sequence is viewed as an L-digit binary number.” According to this
mapping, the sequence [0,0,0,0] is mapped to the first PPM slot at the trans-
mitter since the numerical value of this sequence is 0. At the receiver, after slot
and symbol synchronization has been achieved, this transmitted laser pulse gives
rise to an average signal energy of Ks photons. Similarly, the sequence [1,0,0,1]
corresponds to a laser pulse in the 10th slot, whereas the sequence [1,1,1,1] is
mapped into the PPM symbol with a single pulse in the last, or 16th, time slot.

4.3.3 Differential PPM (DPPM)

In differential PPM [28], also called truncated PPM (TPPM), throughput
is increased by beginning a new PPM symbol immediately following the slot
containing the pulse. That is, non-pulsed slots of a PPM symbol which follow a
pulsed slot are flushed. This imposes a more challenging synchronization problem
because the symbols vary in length and error propagation could occur at the
receiver or decoder. However, it also increases the throughput per unit time by
a factor of two, since symbols are on average half as long as they would be with
ordinary PPM. DPPM is shown in Fig. 4-7.

A Q-switched laser works well with the PPM format [53,54] because it can
successfully confine a large pulse energy to a narrow slot. One side effect of
Q-switched lasers, however, is a required delay, or dead time, between pulses
during which the laser is recharged. This delay is significant relative to the pulse
duration. PPM may be modified to satisfy the dead-time constraint by following
each frame by a period during which no pulses are transmitted. However, this
affects the optimality of PPM as a modulation format.

Fig. 4-7. 8-DPPM is the same as 8-PPM, except all slots 

following the pulse are flushed and a new symbol immediately 

follows.  Modulation of message 101001 is shown.
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DPPM is an attractive low-complexity, high-throughput scheme. However,
it has two implementation issues that are common to variable-rate schemes. The
first is the difficulty of adapting decoding algorithms to function with variable-
rate codes. It may be particularly difficult to accommodate the code as an inner
code in a concatenated coding scheme since a block of data from the outer code
would map to a variable length block of transmitted symbols.

The second problem is the possibility of catastrophic error propagation in
decoding due to loss of frame synchronization. Assume the DPPM decoder
operates in a manner similar to a PPM decoder, by choosing the maximum slot
count in an appropriate window. If an error is made in the estimation of the pulse
position, the location of the following window will be incorrect. The detector
will, however, re-synchronize with the next correctly detected pulse position. The
probability of re-synchronizing in the frame following a pulse-position estimation
is ≈2/3 for q small and M large.

There may be methods of averting the problems with TPPM by buffering
data and performing an appropriate sequence-detection algorithm. However,
given lower-complexity options with similar performance, we did not pursue im-
plementing DPPM.

4.3.4 Overlapping PPM (OPPM)

Overlapping PPM is a generalization of PPM proposed in [55]. In OPPM,
each symbol interval of length T is divided into NM chips of duration Tc =
T/(NM). A pulse occupies N chips, and is constrained to be entirely contained
within the symbol epoch. When N = 1, we have ordinary PPM discussed above,
in which log2 M bits are transmitted per T seconds. When N > 1, the pulse can
be in one of NM − N + 1 positions, and we have log2[NM − N + 1] bits per T

seconds, i.e., nearly an additional log2 N bits per T seconds for large M . OPPM
signaling is shown in Fig. 4-8. OPPM imposes more stringent synchronization
requirements, and special synchronizable codes may used to aid in this [29].

Fig. 4-8. OPPM with N = 3 and M = 2 has six chips per two bits.  

The four possible starting positions for three-chip-wide pulses 

are indicated. Modulation of message 101001 is shown.

3 2 013 2 01 3 2 01
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4.3.5 Wavelength Shift Keying (WSK)

From the viewpoint of communication theory, wavelength-shift keying is sim-
ilar to PPM of the same dimension. Instead of placing a single pulse of laser light
of a given wavelength into one of M time-disjoint time-slots, WSK places a single
laser pulse of one of M disjoint wavelengths into one of M optical detectors, as
shown in Fig. 4-9.

4.3.6 Combined PPM and WSK

One way to avoid the linear increase in required average laser power with
data-rate that is characteristic of WSK, is to use a combination of PPM and
WSK, as shown in Fig. 4-10. By restricting the laser pulse to one of M time-
slots, but allowing the laser pulse to take on any of N wavelengths, the low
average laser power of conventional PPM can be maintained with the added
advantage of increased data-rate. This can be demonstrated by observing that
the dimensionality of the signal-space has been increased from M -dimensions
(PPM) to NM dimensions.

Fig. 4-9.  8-ary WSK uses eight frequencies in one time slot for

each three bits.  Modulation of message 101001 is shown.
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4.4 Rate Limits Imposed by Constraints on Modulation
A modulation format enforces constraints on the relative location of pulses

and describes a mapping of information bits to the sequence of pulses. The
constraints are driven by the limitations of the physical devices and follow-on
electronics. For example, Q-switched lasers require a minimum delay between
pulses to allow the laser to recharge, while timing synchronization algorithms
benefit from limiting the maximum delay between pulses. The modulation for-
mat is designed to satisfy such constraints while maximizing the throughput, or
transmitted bits per second. The upper bound on the throughput for a set of
constraints is referred to as the Shannon capacity of the constraint, to distinguish
it from the channel capacity. The Shannon capacity may be thought of as the
capacity of a channel with constraints on the inputs but no distortion from the
channel. Given a set of practical constraints, we would like to determine the
Shannon capacity and find modulations that satisfy the constraint in an efficient
manner, i.e., with throughputs close to the Shannon capacity. This section treats
those two problems.

If we represent a pulsed slot by a binary 1 and a non-pulsed slot by binary 0,
the modulation format is seen to be a binary code mapping unconstrained bi-
nary sequences to constrained binary sequences. For example, PPM enforces the
constraint that there is exactly one pulse within each frame of M slots and maps
log2 M bits to each of the M possible frames. It is, in essence, a binary code
of rate (log2 M)/M . To reflect this, we refer to the modulation as a modulation
code, a code designed primarily to satisfy certain signalling constraints, as op-
posed to correcting errors, although the distinction is muddled when both are
involved in error correction, or are treated as a single code, as with some iterative
decoding techniques. Any constraints on the sequence of 0’s and 1’s imposed by
the physical devices and implemented by some modulation limits the amount of
information per slot that can be conveyed. An unconstrained channel can sup-
port 1 bit/slot. In comparison, M -ary PPM conveys only (log2 M)/M bits/slot,
which decreases monotonically in M , for M > 3.

The study of Shannon capacity and modulation codes has taken on addi-
tional significance recently with the advent of new techniques in quantum me-
chanics capable of generating orthogonal quantum states. As we shall show in
Section 4.5.4, when optimum quantum detection is employed, the probability of
error for both binary and higher dimensional modulation depends on the overlap
between the quantum states that represent the various hypotheses. The over-
lap approaches zero as the states become orthogonal, yielding error probabilities
that also approach zero. Hence, error-free detection is possible when orthogonal
quantum states are used. For this class of signals, the relevant channel capacity
is the Shannon capacity.
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Recent developments in the generation of number states, |n〉, suggest their
use in future communications systems. Since number states are orthogonal, in
principle they can be detected without error. Furthermore, since number states
represent energy, classical energy detectors, such as photon counters, provide
optimum quantum measurements. Therefore, once the number states are gen-
erated and transmitted, their detection via classical photon-counting detectors
is certain provided the channel does not introduce any appreciable losses. If
the channel is lossy, then the number-state channel transforms into a classical
erasure channel, where the only source of error is loss of the transmitted state.

For the case of number-state communications, capacity can be determined
using a two-step process, where the external noise is first reduced to zero, result-
ing in a classical erasure channel. Then the channel losses are further reduced
to zero, yielding the Shannon capacity.

In this section we consider several physical constraints and show their impact
on the achievable throughput. We also show methods of constructing modulation
codes to implement the constraint.

4.4.1 Shannon Capacity

Constraints on the allowable sequences of 0’s and 1’s may be described in a
concise manner by a labelled graph. Figure 4-11 illustrates a graph describing
the deadtime constraint in which each 1 is separated by at least one 0.

A graph G consists of a set of states V and a set of labeled edges E . Each
edge e is directed, with initial state i(e) ∈ V and terminal state t(e) ∈ V. Se-
quences are generated by traversing edges in the graph and reading off, or con-
catenating, their labels to form words or finite strings of bits. The collection of
all sequences presented by a graph is referred to as a constrained system LS . We
assume throughout that the graphs are irreducible, meaning that there is a path
between any two states in the graph; right-resolving, meaning that the labels
of paths beginning in the same state generate distinct words for all sufficiently

Fig. 4-11.  A one-slot deadtime constraint graph.
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long paths; and primitive, meaning that for some m, there is a path between any
two states of length m. Most constraints of practical interest have an irreducible,
right-resolving, primitive presentation.

A constrained code is an invertible mapping of unconstrained binary se-
quences into constrained binary sequences. The maximum rate of an invertible
code that maps source sequences into sequences from the constrained system is
referred to as the Shannon capacity of the system. It is the noiseless capacity
of a channel defined by the graph in the sense that sequences are transmitted
noiselessly, but are constrained to be those generated by paths on the graph.
Letting N(n, S) denote the number of distinct words of length n occurring in a
constrained system S, the Shannon capacity is given by

C(S) def= lim
n→∞

1
n

log2 N(n, S) bits/slot (4.4 1)

For example, the Shannon capacity of the system illustrated in Fig. 4-11 is
0.6942 bits/slot, which tells us that, if pulses must be separated by at least one
non-pulsed slot, we are strictly limited to data rates less than 0.6942 bits/slot.
There are several approaches to determining the capacity. We will present them
here without proof.

4.4.1.1 Characterizing Capacity: Fixed Duration Edges. Suppose we
describe the constraint with a graph wherein all edges correspond to a dura-
tion of one slot. The adjacency matrix of G is the matrix AG with the u, vth
entry containing the number of edges from state u to state v. For example AG
corresponding to Fig. 4-11 is

AG =
[

1 1
1 0

]
(4.4 2)

Let S be the system presented by G. One can show

C(S) = log2

(
ρ(AG)

)
bits/slot (4.4 3)

where ρ(AG) is the spectral radius of AG , the largest magnitude eigenvalue of
the adjacency matrix. For any non-negative matrix such as an adjacency matrix,
the spectral radius is non-negative. For G that is irreducible and right-resolving,
the spectral radius has a multiplicity of one. The spectral radius of Eq. (4.4-2)
is (1 +

√
5)/2, the golden mean. Hence the capacity is 0.6942 bits/slot.
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To determine the spectral radius for matrices of small dimension, we may
find the eigenvalues and choose the largest. However, this is computationally
prohibitive for matrices of large dimensions. In this case, one can find a good
approximation to the spectral radius via the power method, e.g., [56, Exercise
8.5.16].

4.4.1.2 Characterizing Capacity: Variable Duration Edges. The previ-
ous characterization required each edge in the graph to correspond to one slot, or
a constant duration. We may describe the constraint more concisely, and allow
a broader class of constraints, by allowing edges to have variable durations. For
example, Fig. 4-12 is an equivalent presentation of the constraint presented in
Fig. 4-11. Let τ(e) be the duration of edge e, measured in slots. The partition
matrix of G is the matrix with i, jth entry

Bi,j(s) =
∑

e∈E,i(e)=i,t(e)=j

e−sτ(e)

For example, the partition matrix corresponding to Fig. 4-12 is B(s) = e−s+e−2s.
It can be shown that [57]

C(S) =
s0

ln(2)
bits/slot (4.4 4)

where s0 is the solution to ρ(B(s)) = 1. The spectral radius ρ(B(s)) is strictly
decreasing in s; hence, the solution is unique. For B(s) = e−s + e−2s, s0 =
ln((1+

√
5)/2). Hence, the capacity of Fig. 4-12 is, again, 0.6942 bits/slot. Note

that if all edges have duration 1, then B(s) = exp(−s)AG , s0 = ln(ρ(AG)), and
C(S) = log2 ρ(AG), in agreement with Eq. (4.4-3).

4.4.1.3 Characterizing Capacity: Probabilistic Characterization. We
can consider the graph as describing a Markov source with each edge assigned a
transition probability p(e) such that

Fig. 4-12.  A one-slot deadtime constraint graph,

variable duration edges.
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∑
e,i(e)=v

p(e) = 1 ∀v ∈ V

Let Pu,v =
∑

e,i(e)=u,t(e)=v p(e) be the transition probability matrix with the
u, vth entry denoting the probability of a transition from u to v, given the source
was in state u. For an irreducible graph, the p(e)’s define a unique stationary
distribution µ on the states, the left eigenvector of the transition probability
matrix

µT = µT P

normalized such that
∑

v∈V µ(v) = 1.

The absolute transition probabilities q(e) = µ(i(e))p(e) denote the probabil-
ity that edge e is selected at an arbitrary time and satisfy

∑
e∈E q(e) = 1. The

information conveyed by transmitting the label of e is − log2 q(e) bits, and the
time required to send this information is τ(e). The average information that
may be conveyed by this source per edge is the entropy rate of the source

H(q) = −
∑
e∈E

q(e) log2 p(e) bits/edge

However, edges have variable durations. The average duration of an edge is

T (q) =
∑
e∈E

q(e)τ(e) (4.4 5)

hence, the information rate per slot is

H(q)
T (q)

bits/slot

Let q∗ be the distribution that maximizes the information rate in bits per slot.
Shannon [6] proved that this probabilistic notion of capacity is equivalent to the
combinatorial notion given in Eq. (4.4-1), i.e.,

C(S) =
H(q∗)
T (q∗)

(4.4 6)
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It is informative to determine the maximizing distribution q∗. Let ξ and η be
the unique left and right eigenvectors of B(s0) associated with eigenvalue 1,

ξB(s0) = ξ

B(s0)η = η

normalized such that ξη = 1. The maximizing distribution is given by

p∗(e) =
ηt(e)

ηi(e)
e−s0τ(e)

q∗(e) = ξi(e)ηt(e)e
−s0τ(e)

µ∗(u) = ηuξu

4.4.1.4 Characterizing Capacity: Energy Efficiency. In the prior sec-
tions, we defined capacity as the least upper bound on the efficiency of the
modulation in bits per slot. We may also define capacity as the least upper
bound on the efficiency of the modulation in bits per photon. The characteri-
zation from Sections 4.4.1.2 and 4.4.1.2 extend to this case in a straightforward
manner by assigning edges a cost τ(e) in the appropriate units.

Redefine τ(e) to be the number of photons transmitted when edge e is tra-
versed. Then the average number of photons per edge is given by Eq. (4.4-5),
and the capacity in bits per photon is given by Eq. (4.4-6). For example, in
Fig. 4-12, let the edge labeled ‘01’ cost Ks photons, and the edge labeled ‘0’
cost no photons. Then B(s) = 1 + e−s, and s0 is the solution to e−s0 = 0. In
this case, we can transmit at arbitrarily large bits/photons. One can see this is
accomplished by letting the probability of using edge ‘01’ go to zero.

4.4.2 Constraints

We consider several constraints on laser transmission. Certain lasers require
a recovery time after transmission of a pulse, imposing a minimum delay, or
deadtime, between pulses. Timing recovery will impose a constraint on the
maximum time that may elapse between pulses. Finally, any deep-space optical
system will be subject to an average power constraint, or, equivalently for equal-
power pulses, a duty-cycle constraint.
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4.4.2.1 Dead Time. We first consider the general form of the deadtime
constraint, presented in Fig. 4-13. The capacity, from Eq. (4.4-4) is

C(d) = log2(λ)

where λ is the largest positive root of

λ−(d+1) + λ−1 − 1 = 0 (4.4 7)

For small d, exact solutions may be found efficiently for Eq. (4.4-7). For large d,
substitute λ = eC(d) and use the approximation e−C(d) ≈ 1−C(d), which yields
C(d)e(d+1)C(d) ≈ 1 and thus

d + 1 ≈ (d + 1)C(d)e(d+1)C(d)

or

C(d) ≈ W (d + 1)
(d + 1) ln 2

bits/slot (4.4 8)

where W (z) is the productlog function, which gives the solution for w in z = wew.

Denote the two edges in the graph e0 and e10d . Each transmission of e0

can be thought of as an unpulsed slot in excess of the minimum required. For
large d, the optimal probability of this transmission is

p(e0) ≈ eW (d+1)/(d+1)

= exp
(
− exp

(
− W (d + 1)

))
The productlog function grows roughly like the log, so, to a rough approximation,
the probability of inserting excess zeros grows as e−1/(d+1).

Fig. 4-13.  Deadtime constraint.

0 0 10d
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4.4.2.2 Runlength. Any practical system will also limit the duration between
pulses to aid in timing recovery. Let k denote the maximum number of consec-
utive slots without a pulse, or the runlength constraint. Figure 4-14 illustrates
the deadtime and runlength constraint. The capacity, from Eq. (4.4-4), is

C(d, k) = log2(λ) bits/slot

where λ is the largest positive root of

λ−(d+1) + λ−(d+2) + · · · + λ−(k+1) − 1 = 0

The subject of deadtime and runlength constraints has been extensively studied
in the literature pertaining to magnetic and optical recording, e.g., [58], where
modulation codes of this type are extensively used.

The energy efficient case has a simple solution. Let each transmission of
a 1 cost a single photon, and let CE(d, k) be the energy-efficient deadtime and
runlength capacity. We have

CE(d, k) = log2 k − d + 1 bits/photon

achieved by choosing each of the edges with equally likely probability.

Fig. 4-14.  Deadtime and runlength constraint.

0d1

...

0k1

0d+11

4.4.3 Modulation Codes

A modulation code is an invertible mapping from unconstrained binary se-
quences into a system S. Let RC(S) denote the rate of a modulation code C into
the system S. Then EC(d)

def= RC(S)/C(S) is the relative efficiency of the code,
measuring how close the code rate is to the limit. Note that the efficiency of a
code is measured relative to the constraint it is designed to satisfy.

There are well-known techniques to construct codes into a modulation sys-
tem at rates arbitrarily close to capacity, e.g., [59,60]. However, for our parameter
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range, a straight-forward application of these approaches may be prohibitively
complex. In the following sections we present some approaches that trade effi-
ciency for complexity.

4.4.3.1 M-ary PPM with Deadtime. PPM may be made to satisfy a dead-
time constraint by appending d non-pulsed slots after each PPM frame as illus-
trated in Fig. 4-15. A graph describing the allowable sequences for deadtime-
PPM is illustrated in Fig. 4-16.

The rate is

Rppm(d, M) =
log2(M)
M + d

bits/slot

We will allow non-integer M in analysis to simplify expressions, since rounding
has a negligible effect on rate for large d. For a given value of d we find M∗, the
argument that maximizes Rppm(d, M), by solving ∂Rppm(d, M)/∂M = 0, which
yields

ln(M∗)
M∗ + d

=
1

M∗

or

Fig. 4-15.  PPM signaling with a deadtime constraint.

... ...... ...

d slots

Deadtime

M slots

(One PPM

symbol)

M slots

(One PPM

symbol)

M slots

(One PPM

symbol)

d slots

Deadtime

d slots

Deadtime

Fig. 4-16.  Deadtime-PPM.

10M-10d

010M-20d

0M-110d
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M∗ =
d

W (d/e)
(4.4 9)

Noting that Rppm(d, M∗) = 1/(M∗ ln 2), the maximum rate is

Rppm(d) =
W (d/e)
d ln 2

bits/s

By an application of L’Hôpital’s rule, one can show Rppm(d)/C(d) → 1 as
d → ∞, i.e., deadtime-PPM achieves deadtime capacity in the limit of large d.
However, for small to moderate d, significant gains in throughput over PPM are
available.

4.4.3.2 M-ary DPPM with Deadtime. With deadtime-PPM, there are d

unused slot positions in the transmitted signal following each frame—unused
in the sense that they neither convey information nor are always necessary for
satisfying the deadtime constraint. It would be more efficient to map log2 M bits
to a pulsed slot position and follow each pulse by exactly d non-pulsed slots
as illustrated in Fig. 4-17. This signaling scheme is referred to as deadtime-
differential-PPM (deadtime-DPPM), presented by Fig. 4-18.

Fig. 4-17.  In DPPM signaling, the designated deadtime begins immediately

after the pulse of the PPM symbol.

... ...... ...

d slots

Deadtime

≤ M slots

(One PPM

symbol)

≤ M slots

(One PPM

symbol)

≤ M slots

(One PPM

symbol)

d slots

Deadtime

d slots

Deadtime

Fig. 4-18.  Deadtime-DPPM.

10d

010d

0M-110d

0 ...



248 Chapter 4

Since the duration of a codeword mapping to log2 M bits is variable,
deadtime-DPPM has an average rate

Rdppm(d, M) =
log2(M)

M + 1
2

+ d
bits/slot

For a given value of d we find M∗, the argument that maximizes Rdppm(d, M),
by solving ∂Rdppm(d, M)/∂M = 0, which yields

M∗ =
2d + 1

W

(
2d + 1

e

)

and maximum achievable rate

Rdppm(d) =
2W

(
2d + 1

e

)
(2d + 1) ln 2

bits/slot

Since Rdppm(d) is bounded above by C(d) and below by Rppm(d), DPPM also
achieves capacity in the limit of large d. DPPM is a low-complexity scheme
that demonstrates significant throughput gains over PPM. However, there are
practical issues with implementing variable-rate decoders. Hence we investigate
an intermediate solution.

4.4.3.3 Synchronous Variable-Length Codes. The encoders considered so
far have been either fixed rate or variable rate. Allowing a variable rate adds a
degree of freedom in design, resulting in higher efficiency and/or lower complexity
encoders. However, variable rate encoding and decoding has practical drawbacks.
A compromise is to allow a synchronous rate, namely mappings of mp bits to
mq bits, where p, q are fixed positive integers, and m is a positive integer that can
vary. Methods of constructing synchronous variable-length codes were initially
described in [61], and reviews of various approaches may be found in [58,60].

We describe a systematic procedure to construct synchronous encoders and
decoders for (d,∞) constraints. The procedure may be interpreted as a practical
method of approaching rates of deadtime-DPPM.

Choose a rate p/q < C(d) bits/slot. We desire a set of variable-length
codewords C = {c1, c2, · · · , cN} such that any sequence formed by freely con-
catenating the codewords satisfies the constraint, the codeword lengths l(ci) are
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multiples of q, no codeword is the prefix of another (sufficient but not necessary
to guarantee decodability), and the collection satisfies the Kraft (In)equality:

∑
ci∈C

2−l(ci)p/q = 1 (4.4 10)

We can use such a set to construct a synchronous variable-length code mapping
unconstrained binary sequences into the constraint.

We detail one method to construct such a set that leads to a low-complexity
encoder and decoder. The codewords are constructed as nodes on a binary tree.
The root of the tree is the pattern 0d. Branches with a label 1 are extended with
zeros to the first length that is a multiple of q. At this point, the branch label is
taken as a codeword. The tree is expanded until we have a set of codewords that
satisfies Eq. (4.4-10). Figure 4-19 illustrates the procedure for (d, k) = (16,∞),
q = 7.

The all-zeros pattern is not allowed as a codeword since allowing it reduces
the minimum Euclidean distance from 2 to 1, the small gain in throughput does
not offset the loss due to the smaller distance (allowing the all zeros codeword
does yield significant throughput gains for small d), and a finite k constraint
is desired for synchronization. The encoding and decoding may be done at a
fixed rate by using encoders and decoders with appropriate memory. A simple
encoder implementation exists if we allow variable-out-degree states.

Fig. 4-19.  Synchronous variable-length construction for

(d,k) = (16,•), q = 7.
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4.5 Performance of Uncoded Optical Modulations
We now analyze the performance of the modulation schemes discussed in Sec-

tion 4.3 when used on channels governed by the models described in Section 4.2.
As in Fig. 4-2, let X denote the message to be sent on the channel and let Y

denote the output of the detector. If we observe Y = y, the maximum-likelihood
(ML) detector1 produces the output

X̂ = argmax
x

fY |X(y|x) (4.5 1)

where fY |X(y|x) is the conditional probability density function or probability
mass function of Y , given X = x. If X is a priori uniformly distributed, as it is
for most cases of interest, the ML detector minimizes the probability of detector
error Pr(X̂ �= X). We shall assume a uniform a priori distribution throughout
the rest of the chapter.

When X can take on only the values 0 or 1, it is often convenient to
write the ML detector in terms of the log-likelihood ratio Λ(y) = lnL(y) =
ln[fY |X(y|1)/fY |X(y|0)]. The log-likelihood ratio test is an equivalent way to
write Eq. (4.5-1) [62]:

X̂ =
{

1 if Λ(y) > 0
0 if Λ(y) ≤ 0 (4.5 2)

When Λ(y) = 0, Eq. (4.5-2) defines X̂ = 0, but the error rate would not be
affected by defining X̂ to be randomly selected from 0 and 1. As we shall see
in the following sections, the log-likelihood ratio test often reduces to a simple
threshold test of the form

X̂ =
{

1 if y > τ
0 if y ≤ τ

(4.5 3)

1 The use of “detector” here does not refer to just the physical recording of photons, but rather
the more general algorithmic problem of identifying a transmitted signal given one or more
observables.
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4.5.1 Direct Detection of OOK on the Poisson Channel

The Poisson channel with fY |X(k|0) = Kk
b e−Kb/k! and fY |X(k|1) = (Ks +

Kb)ke−(Ks+Kb)/k! results in a log-likelihood ratio of

Λ(k) = ln
(

(Ks + Kb)ke−(Ks+Kb)

k!
· k!
Kk

b e−Kb

)
= k ln

(
1 +

Ks

Kb

)
− Ks

(4.5 4)

from which we can see that the ML rule becomes a threshold test as in
Eq. (4.5-3), with threshold

τ =
Ks

ln
(

1 +
Ks

Kb

) (4.5 5)

Denoting the expression “greatest integer less than or equal to x” by 
x�, the
bit error rate (BER) can be expressed as

Pb =
1
2
− 1

2

�τ�∑
k=0

(
f(k|0) − f(k|1)

)
(4.5 6)

which is a finite sum of easily computed terms. When no background is present,
then Kb = 0, the threshold in Eq. (4.5-5) becomes τ = 0, and the summation
reduces to a single term:

Pb =
1
2
e−Ks

The performance of OOK on a Poisson channel is shown in Fig. 4-20 for various
values of Kb. Discontinuities in the slope of the performance curves for Kb > 0
occur when the optimum threshold changes by an integer amount. A more
general derivation of the optimum threshold for the case of unequal a priori
probabilities can be found in [63].

The BER may be expressed in terms of the photon efficiency, as this provides
a direct way to determine system efficiency when operating at a prescribed error
probability [64]. Since each OOK symbol corresponds to one bit and the average
photons per symbol is Ks/2, the photon efficiency of uncoded OOK signaling
can be expressed as
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Fig. 4-20.  BER versus signal level for uncoded OOK signaling on a 

Poisson channel, for various background levels.
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This leads to the following alternate expression for BER, in terms of photon
efficiency, when Kb = 0:

Pb =
1
2
e−2/ρ (4.5 8)

The result shows that operating at high values of ρ tends to result in high
BERs. By generating plots of the error probability as a function of ρ, the photon
efficiency of the system can be determined at any desired uncoded BER.

4.5.2 Direct Detection of PPM

At the receiver, the detected photons in each slot are counted. If hard
decisions are used, the slot with the greatest photon count is declared to be the
signal slot. This has been shown to be the ML decision for the channel models
described in Section 4.2 [65]. On a continuous-output channel, the PPM symbol
error probability Ps is the well-known performance [47,66] of an ML detector for
M -ary orthogonal signaling:
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Ps = 1 − Pr
(
Y1 = max{Y1, · · · , YM}|X1 = 1

)

= 1 −
∫ ∞

−∞
fY |X(y|1)

[∫ y

−∞
fY |X(y′|0)dy′

]M−1

dy (4.5 9)

In Eq. (4.5-9), observations in the M − 1 nonsignal slots are assumed to be
independent. Equation (4.5-9) may be evaluated numerically by first producing
a table lookup for the bracketed term, and then computing the outer integral
numerically in the usual way.

When the detector outputs take on discrete values, there is a possibility of
a tie for the maximum count. The solution for this problem has been derived in
[7]. Suppose k photons are detected in the slot containing the pulse, l nonsignal
slots also have count k, and the remaining nonsignal slots have count strictly less
than k. Then the correct decision is made with probability 1/(l+1). Otherwise,
an error is made. By summing over all possible values of k and l, it follows that

Ps = 1 −
∞∑

k=0

M−1∑
l=0

Pr

⎡
⎢⎣

correct decision when
l nonsignal slots tie
the signal slot for the
maximum count

⎤
⎥⎦ × Pr

⎡
⎢⎣

exactly l of M − 1
nonsignal slots have
value k, all others
smaller

⎤
⎥⎦

(4.5 10)

× Pr
[

signal slot
has value k

]
(4.5 11)

= 1 −
∞∑

k=0

M−1∑
l=0

1
l + 1

(
M − 1

l

)
fY |X(k|0)lFY |X(k − 1|0)M−l−1fY |X(k|1)

(4.5 12)

where fY |X(k|1) and fY |X(k|0) denote the conditional probabilities that a re-
ceived slot Yi = k when a 1 (pulse) or 0 (no pulse), respectively, is transmitted in
the slot, and FY |X(k|1) (FY |X(k|0)) denote the cumulative distributions. An ex-
tension of Eq. (4.5-12) to n-pulse PPM, n ≥ 2, is straightforward, and involves
a triple summation in place of the double summation. After some algebraic
manipulation, this can be rewritten in a single summation as [67]
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Ps = 1 − 1
M

∞∑
k=0

L(k)
(
FY |X(k|0)M − FY |X(k − 1|0)M

)
(4.5 13)

where L(k) is the likelihood ratio. On a noiseless channel, fY |X(0|0) = 1, and
the erasure probability is fY |X(0|1), and thus, Eq. (4.5-13) can be simplified to

Ps =
(M − 1)fY |X(0|1)

M
(4.5 14)

Once the PPM symbol is detected, it is mapped to a string of log2(M) bits
via the inverse of the encoding mapping (see Fig. 4-6). There are M/2 symbol
errors that will produce an error in a given bit in the string, and there are
M −1 unique symbol errors. Thus, assuming all symbol errors are equally likely,
the resulting bit error rate is

Pb =
M

2(M − 1)
Ps (4.5 15)

where Ps is given by Eq. (4.5-9) or Eq. (4.5-13).

4.5.2.1 Poisson Channel. For Kb > 0, the SER in Eq. (4.5-13) becomes

Ps = 1 −
∞∑

k=0

(
1 +

Ks

Kb

)k
e−Ks

M

(
FY |X(k|0)M − FY |X(k − 1|0)M

)
(4.5 16)

where FY |X(k|0) =
∑k

m=0 Kk
b e−Kb/k!. When Kb = 0, from Eq. (4.5-14) we have

Ps =
(M − 1)e−Ks

M
(4.5 17)

and from Eq. (4.5-15) we see that Pb = (1/2)e−Ks , which is independent of M

and equal to that of OOK. This is shown in Fig. 4-21(a). As Kb increases,
the dependence on M grows and performance for each M degrades, as seen in
Figs. 4-21(b) and 4-21(c). It is not appropriate to interpret performance versus
Ks as a measure of power efficiency, however. The average transmitter power is
proportional to Ks/M photons per slot. Whereas low values of M in Figs. 4-
21(a) through 4-21(c) produce a lower BER compared to high values of M , the
situation is reversed in Figs. 4-21(d) through 4-21(f). The performance is also
shown for bits/photon in Figs. 4-21(g) through 4-21(i), where it is also seen that
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high values of M are more photon efficient. Note that there is an average power
difference of about 30 dB between M = 2 and M = 4096 [Figs. 4-21(d) through 4-
21(f)], and a photon efficiency difference of about 10 dB [Figs. 4-21(g) through
4-21(i)]. The performance is also shown in terms of the slot SNR β = K2

s /Kb in
Figs. 4-22(a) and 4-22(b), where we see little dependence on M ; when plotted
in terms of the bit SNR βb = K2

s /(2Kb log2 M), the 30-dB gap manifests itself
again, as seen in Figs. 4-22(c) and 4-22(d).

Expressing the BER in terms of the photon efficiency can be accomplished
analytically when Kb = 0, by writing Ks in terms of ρ and substituting into
Eq. (4.5-17), as originally shown in [64]:

Pb =
1
2
e−(log2 M/ρ) =

1
2
M−(log2 e/ρ) =

1
2
M−1.44/ρ (4.5 18)

4.5.2.2 AWGN Channel. The probability of symbol error is given by
Eq. (4.5-9), which becomes

Ps = 1 −
∫ ∞

−∞

1
σ1

φ

(
x − m1

σ1

)
Φ

(
x − m0

σ0

)M−1

dx (4.5 19)

= 1 −
∫ ∞

−∞

√
γ

β + γ
φ

(√
γ

β + γ

(
v −

√
β
))

Φ(v)M−1dv (4.5 20)

where φ(x) = (1/
√

2π)e−x2/2 is the standard normalized Gaussian probability
density function, Φ(x) is its cumulative distribution function, and, as defined in
Section 4.2.3, β = (m1 − m0)2/σ2

0 and γ = (m1 − m0)2/(σ2
1 − σ2

0). If σ2
1 = σ2

0 ,
then γ = ∞ and Eq. (4.5-20) simplifies to

Ps = 1 −
∫ ∞

−∞
φ

(
x −

√
β
)

Φ(x)M−1dx (4.5 21)

The BER Pb is then given by Eq. (4.5-15) and can be expressed in terms of the
bit SNR βb = β/(2Rc), where in uncoded M -PPM there are Rc = log2 M bits
per PPM symbol.

For the case of homodyne detection, the BER can also be expressed in terms
of ρ, as shown in [68]:
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Ps = 1 −
∫ ∞

−∞
dx

e−x2

√
π

[
1 − Q

(
x
√

2 + 2

√
log2 M

ρ

)]M−1

(4.5 22)

The limiting form of the bit error probability, as the number of symbols (hence
the dimension of the symbol set) grows without bound, is in [68]. Using
Eq. (4.5-15) to relate Ps to Pb, we get
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lim
M→∞

Pb =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2
;

2
ρ

< ln 2

0;
2
ρ

> ln 2

(4.5 23)

It follows that arbitrarily low error probabilities can be achieved as M ap-
proaches infinity, as long as the inequality ρ < 2/ ln 2 ≈ 2.89 bits/photon is
satisfied.

4.5.3 Direct Detection of Combined PPM and WSK

Combined PPM and WSK is an orthogonal signaling scheme. Therefore, its
performance is the same as PPM, but with NM dimensions instead of M . The
probability of correct detection is given by Eqs. (4.5-9) and (4.5-13), but with M

replaced by NM .

The information efficiency of this combined modulation scheme is
ρ = (log2 NM)/Ks = (log2 N + log2 M)/Ks bits/photon, but the photon rate
remains ns = Ks/T photons/second. Hence the data rate is

R =
log2 NM

Ks

Ks

T
=

log2 N + log2 M

T
bits/second (4.5 24)

For a given bandwidth, the throughput of combined PPM and WSK is higher
than PPM alone. However, this modulation scheme requires N detectors, one
for each wavelength, instead of just one.

4.5.4 Performance of Modulations Using Receivers Based on
Quantum Detection Theory

We now present a description of receivers based on quantum detection theory,
along with some specific examples of optical modulation formats that are of
potential interest for deep-space applications.

4.5.4.1 Receivers Based on Quantum Detection Theory. In 1973,
Kennedy described an ideal coherent receiver with significant communication ad-
vantages over ideal heterodyning, homodyning, or direct detection receivers [69].
Kennedy’s receiver adds a local field prior to photodetection that exactly negates
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the received field corresponding to one of the possible messages. The photode-
tector is guaranteed (ideally) to record zero photons in the case of this message.
For the other message(s), the photodetector responds to the coherent sum of the
signal field and the local field. For the binary coherent state detection problem,
Kennedy’s receiver obtains a 3-dB improvement over ideal homodyne or direct
detection and a 6-dB improvement over ideal heterodyne detection.

Dolinar proposed a generalization of Kennedy’s receiver structure [70] and
optimized it to obtain a realization of an exactly optimum quantum measurement
for the case of binary coherent state signals [70]. The optimum receiver for
the binary case eventually nulls the field corresponding to the message that is
ultimately selected as more likely. Initially, however, the receiver does not pre-
select one of the two messages for nulling. The added local field changes abruptly
with each observed count from the photodetector as the message likelihoods are
updated.

Dolinar also described a near-optimum conditionally nulling receiver for the
M -ary PPM detection problem [71]. This receiver sequentially, slot by slot,
based on prior observed counts, decides either to add or not add a local field
designed to null the signal field that corresponds to a pulse in the current slot.

Since an ideal nulling or conditionally nulling receiver is a mathematical
artifact that can never be precisely realized in practice, non-ideal versions that
permit phase errors in the nulling signal have also been modeled and analyzed
by Dolinar [71] and Vilnrotter and Rodemich [63].

The performance of the optimum quantum receiver has been determined
in the literature, particularly for the cases of noiseless reception of binary and
higher-dimensional signals and of noisy reception of binary signals. The perfor-
mance literature has recently extended to higher dimensional signals operating
in the presence of noise. A summary of these results follows.

4.5.4.1.1 Quantum Detection with Binary Decisions. The problem of
determining which of two possible quantum states is present, representing binary
hypotheses, has been addressed in detail for the case of both noisy and noiseless
reception [3,5,75]. Under hypothesis H0, the received electromagnetic field is in
a mixture of states governed by the density operator ρ0, and under hypothesis
H1, it is governed by ρ1. Assume equal a priori probabilities, so that Pr(H0) =
Pr(H1) = 1/2. Suppose a receiver applies the “detection operators” defined in
terms of an appropriate set of orthonormal basis states {|bn〉}:
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Π0 =
∑

n: bn∈I0

|bn〉〈bn|

Π1 =
∑

n: bn∈I1

|bn〉〈bn|
(4.5 25)

These detection operators effectively partition the outcome space R into two
disjoint regions I0 and I1, such that R = I0 ∪ I1, I0 ∩ I1 = ∅. The detection
operators are projection operators that partition the outcome space into an ex-
haustive set of disjoint decision regions. For binary detection the outcome space
contains only two regions, Π0+Π1 = 1; hence only one of the detection operators
needs to be applied. If the outcome of the measurement falls within the region
I1, H1 is selected. Otherwise, the receiver chooses H0.

The conditional probabilities of a correct decision are [3,5,75]

Pr(C|H1) = Qd = Tr [ρ1Π1]

Pr(C|H0) = 1 − Q0 = 1 − Tr [ρ0Π1]

(4.5 26)

It follows that, for equally probable signals, the average probability of correct
decision is

Pc =
1
2
{
Tr [ρ1Π1] + 1 − Tr [ρ0Π1]

}

=
1
2
{
1 + Tr [(ρ1 − ρ0)Π1]

}
(4.5 27)

and the average probability of error can be expressed as

Pb = 1 − Pc =
1
2

{
1 − Tr

[
(ρ1 − ρ0)Π1

]}
(4.5 28)

It is clear from the form of Eq. (4.5-28) that the probability of error is minimized
by choosing the projection operator Π1 to maximize the quantity Tr [ρ1 − ρ0)Π1].

4.5.4.1.2 The Optimum Measurement for Binary Detection. Hel-
strom demonstrated that the detection operator which maximizes the quantity
Tr [(ρ1 − ρ0)Π1] is of the form [5]
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Π∗ =
∑

k:ηk≥0

|ηk〉〈ηk| (4.5 29)

where |ηk〉 are the eigenvectors and ηk the eigenvalues of the operator (ρ1 − ρ0),
that is,

(ρ1 − ρ0)|ηk〉 = ηk|ηk〉 (4.5 30)

The probability of error for this optimum projector is

P ∗
b =

1
2

{
1 − Tr

[
(ρ1 − ρ0)Π∗]}

=
1
2

⎧⎨
⎩1 −

∑
k:ηk>0

ηk

⎫⎬
⎭ (4.5 31)

as shown in [3,5,75]. For “pure states” represented by |ψ0〉 and |ψ1〉, the density
operators are ρ0 = |ψ0〉〈ψ0| and ρ1 = |ψ1〉〈ψ1|. The eigenvectors of the operator
(ρ1 − ρ0) are now linear combinations of |ψ0〉 and |ψ1〉, yielding an expression of
the form

|ηk〉 = zk0|ψ0〉 + zk1|ψ1〉, k = 0, 1 (4.5 32)

where the coefficients are determined by substituting into Eq. (4.5-30) and equat-
ing coefficients. The optimum projection operator is simply Π∗ = |η1〉〈η1|, and
its application yields the detection and false-alarm probabilities

Qd = Tr [ρ1Π∗] =
1
2

[
1 +

√
1 − |〈ψ1|ψ0〉|2

]
(4.5 33)

Q0 = Tr [ρ0Π∗] =
1
2

[
1 −

√
1 − |〈ψ1|ψ0〉|2

]
(4.5 34)

The probability of correct detection becomes

P ∗
c =

1
2

[
1 +

√
1 − |〈ψ1|ψ0〉|2

]
(4.5 35)
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while the probability of error is

P ∗
b = 1 − P ∗

c =
1
2

[
1 −

√
1 − |〈ψ1|ψ0〉|2

]
(4.5 36)

Thus, for the case of binary decisions, the error probability associated with
the optimum projection measurement depends on the overlap between the two
quantum states.

4.5.4.1.3 Orthogonal Signal States. With orthogonal signal states,
〈ψ0|ψ1〉 = 0. Substituting into Eq. (4.5-36), we find that P ∗

b = 0. There-
fore, truly error-free communication could be achieved if practical orthogonal
signal states could be generated, for example, if the number states |ψ0〉 = |0〉
and |ψ1〉 = |1〉 could somehow be prepared [75].

4.5.4.2 Performance of Representative Modulations. Performance of
the following detection schemes for binary modulation has been described in
[75], repeated here for reference.

4.5.4.2.1 On–Off Keying. For on–off keying we let

|ψ0〉 = |0〉

and

|ψ1〉 = e−|α|2/2
∞∑

n=0

αn

(n!)1/2
|n〉

where the average number of photons is Ks = |α|2 for the optical pulse, and
zero for the ground state. The squared magnitude of the overlap between
the two states is |〈ψ0|ψ1〉|2 = e−|α|2 , yielding P ∗

b = 1/2
[
1 −

√
1 − e−|α|2

]
=

1/2
[
1 −

√
1 − e−Ks

]
for optimum quantum detection. In comparison, the error

probability for photon-counting detection was shown to be Pb = (1/2)e−|α|2 =
(1/2)e−Ks .

4.5.4.2.2 Optical BPSK. In this case of optical BPSK, we have two coher-
ent states with the same average photon energy, but π radians out of phase.
The signal states are defined as |ψ0〉 = |α〉 and |ψ1〉 = |β〉 where the complex
amplitudes are related as β = −α, and the average number of signal photons
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is Ks = |α|2. Therefore, |〈ψ0|ψ1〉|2 = e−4Ks , and the error probability be-
comes P ∗

b = 1/2
[
1 −

√
1 − e−4Ks

]
. A physically realizable receiver structure

that achieves this error probability has been devised and analyzed by Dolinar
[70].

4.5.4.2.3 Near-Optimum Optical BPSK. Exponentially optimum (or “near
optimum”) performance can be obtained by adding a local field of the same
amplitude, in phase, to the received field followed by photon counting, as shown
by Kennedy [69]. With this technique, the field amplitude under one hypothesis
is shifted to the ground state, but doubled under the other. The error probability
for this near-optimum detection scheme is Pb = (1/2)e−4|α|2 = (1/2)e−4Ks .

4.5.4.2.4 Coherent Detection: The Classical Limit. If we add a local
field of great amplitude, in phase, to the received field and detect the resulting
sum field using classical energy detection, then the performance of the classical
coherent optical detector is obtained. For optical BPSK modulation, the error
probability for this receiver is given by [72] Pb = Q

(√
4|α|2

)
= Q

(√
4Ks

)
,

where Q(x) ≡ (1/
√

2π)
∫ ∞

x
e−y2/2dy. Performance curves for the various modu-

lation formats and detection options are shown in Fig. 4-23.

4.5.4.2.5 Optimum Binary Detection in the Presence of Background
Radiation. When background radiation is present, the received field is in a mix-
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ture of states described by an appropriate density operator. The probability of
error can be calculated by finding the significant eigenvalues of the difference
operator (ρ1 − ρ0) and applying the formula for the error probability given by
Eq. (4.5-31). Equivalently, the matrix representation of the difference opera-
tor can be diagonalized, the projection operator that selects only the positive
eigenvalues applied, and the trace of the resulting diagonal matrix determined.

The following analysis parallels the derivation in [3] for on–off keying with
noise. For this scenario, a density matrix ρ1 can be defined for the signal and
noise case. The controllable values are the size of the matrix, the average number
of noise photons, and the average number of signal photons. The elements of
this density matrix in the number state basis is, for m ≥ n,

〈n|ρ1|m〉 = (1 − v)

√
n!
m!

vm

(
µ∗

N

)m−n

e(−(1−v)|µ|2)Lm−n
n

[
−(1 − v)

|µ|2
v

]

and for m < n,

〈n |ρ1|m〉 = 〈m |ρ1|n〉∗

v =
N

(N + 1)

(4.5 37)

where N represents the average number of noise photons, µ is the complex enve-
lope of the signal, |µ|2 is the average number of signal photons, and Lm−n

n (x) is a
Laguerre polynomial. A density operator ρ0 for the null hypothesis, or noise-only
case, can be generated using

ρ0 =
∞∑

n=0

(1 − v)vn |n〉 〈n| (4.5 38)

Next, the resulting difference matrix is diagonalized using the formula
[〈ηk|ρ1 − ρ0|ηk〉] . The probability of error is found from this diagonalized matrix.
The probability of correct detection is found by adding all the positive diagonal
terms, yielding the probability of error

Pb = 1 − Pc =
1
2

⎧⎨
⎩1 −

∑
k:ηk>0

ηk

⎫⎬
⎭ (4.5 39)
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For comparison, the performance of classical coherently detected BPSK sig-
nals observed in the presence of noise is called “threshold detection,” with error
probability Pb = Q

(√
4Ks/(2N + 1)

)
, which is seen to be similar to the ex-

pression for the noiseless case, but with Ks replaced by Ks/(2N +1). Note that
for high background levels, the performance of the classical threshold detector is
nearly as good as that of the optimum quantum detector. Hence, the physically
realizable classical detector is a good approximation to the optimum quantum
detector under conditions of high background radiation.

4.5.4.2.6 Multiple Hypotheses: Orthogonal Envelopes. The perfor-
mance of the optimum quantum receiver for the case of equal-energy, equally
probable signals is considered [3,5,75]. The signals are assumed to have orthog-
onal classical envelopes, which means that the classical complex envelopes Sk(t)
obey the condition

∫ T

0

S∗
k(t)Sm(t)dt = 0, k �= m (4.5 40)

In this case there are assumed to be M hypotheses, represented by M orthogonal
classical envelopes modulating electromagnetic plane waves normally incident on
the receiving aperture, and with temporal variation proportional to Sk(t). PPM
is an example of this modulation format where a single pulse is placed in one of
M consecutive slots. The kth aperture-field mode is assumed to be matched to
the kth signal, such that when the kth signal is present, the state of the aperture
field is in a coherent state described by the “product state”

|αk〉 =
M∏

j=1

|αk,j〉 = |αk,1〉|αk,2〉 · · · |αk,M 〉 (4.5 41)

where each of the |αk,j〉 is a coherent state associated with an individual mode,
with |αk,j | = |α|δk,j , and where Ks = |α|2 is the average number of signal
photons in each signal.

Since the M product states are linearly independent, the optimum strategy
for minimizing the average probability of error is to project the received signal
state onto M orthonormal measurement states spanning the same subspace and
select the signal corresponding to the measurement state with the greatest pro-
jection. The state-space interpretation is similar to the binary case; because of
symmetry, the M orthogonal measurement states are aligned with the M sig-
nal states in such a way as to maximize the projection of each state onto the
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corresponding measurement state, thus minimizing the probability of error. It
has been shown [70] that for equally likely signals, the minimum symbol error
probability for the optimum quantum receiver is

Ps =
M − 1
M2

=
[√

1 + (M − 1)e−Ks −
√

1 − e−Ks

]2

(4.5 42)

The error probability is given by Ps = 1/2
[
1 −

√
1 − |〈ψ1|ψ2〉|2

]
as before,

but now |〈ψ1|ψ2〉|2 = e−2Ks , as compared to e−Ks for the corresponding overlap
with on–off keying, and e−4Ks for BPSK signals. For comparison, the symbol
error probability achieved by the photon-counting receiver in the absence of
background radiation is given by Eq. (4.5-17). These results are summarized in
[75].

For high-dimensional signaling and modest error probabilities on the order of
Ps

∼= 10−3, conventional photon counting performs approximately 1.3 dB worse
than the optimum quantum receiver in the absence of background radiation, but
this performance gap increases at the lower error probabilities.

The performance of PPM and other high-dimensional signal envelopes in the
presence of noise is not known in general; however, numerical techniques have
been developed recently and applied to three-dimensional signals [73–75]. The
performance of the optimum quantum receiver for the case of ternary signals in
the presence of noise has been obtained. This signaling scheme is defined by three
signal states, namely, |α〉, | − α〉, and |0〉. Further work is required to extend
this approach to arbitrary dimensional signal sets operating in the presence of
external noise.

4.6 Optical Channel Capacity
Shannon demonstrated in [76] that for any communications channel, as long

as the rate of transmitting information is less than some constant, C, it is possible
to make the average error probability arbitrarily small by coding messages into
a large enough class of signals. The constant C is called the capacity of the
channel. Characterizing the capacity of the optical channel provides a useful
bound on the data rates achievable with any modulation and coding scheme,
thus serving as a benchmark for assessing the performance of a particular design
[10–20,22–27,43,48].

The capacity will be a function of the received optical signal and noise pow-
ers, the modulation, and the detection method. In this section, we assume the
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modulation is PPM. The loss in capacity by restricting the modulation to PPM
is small (at most a few tenths of a dB) in the low average power regime where
the deep-space optical channel currently operates.

We divide the capacity into two categories depending on the type of infor-
mation provided to the decoder by the receiver. In one case, the receiver makes
estimates of each PPM symbol, passing these estimates, or hard decisions, on
to the decoder. In this case, the (hard-decision) capacity may be expressed as
a function of the probability of symbol error, Ps, derived for several channel
models in Section 4.5.

In the second case, the receiver makes no explicit symbol decision, but passes
on slot counts (integrals of the received signal in each slot), or soft decisions, di-
rectly to the decoder. In this case, the (soft-decision) capacity may be expressed
as a function of the channel statistic fY |X , presented for several channel models
in Section 4.2.2. The soft-decision capacity is at least as large as the hard-
decision capacity because the slot counts provide additional information to the
decoder.

4.6.1 Capacity of the PPM Channel: General Formulas

The hard-decision PPM channel is an M -ary input, M -ary output, symmet-
ric channel with capacity given by [66]

C = log2 M + (1 − Ps) log2(1 − Ps) + Ps log2

(
Ps

M − 1

)
bits/PPM symbol

(4.6 1)

where Ps is the probability of incorrect PPM symbol detection. The function Ps

is provided for several channel models in Section 4.5.

The soft-decision capacity is given by

C = EY log2

[
ML(Y1)∑M
j=1 L(Yj)

]
bits/PPM symbol (4.6 2)

an expectation over Y, where L(y) = fY |X(y|1)/fY |X(y|0) is the channel likeli-
hood ratio, and the Yj have density fY |X(y|1) for j = 1 and density fY |X(y|0)
otherwise.
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The M -fold integration in Eq. (4.6-2) is often intractable. However, it is
straightforward to approximate the expectation by a sample mean. A quick
approximation follows from the lower bound

C ≥ E log2

⎡
⎢⎢⎣ M

1 +
M − 1
L(Y1)

⎤
⎥⎥⎦ bits/PPM symbol (4.6 3)

which is a good approximation for large M , reducing the M -fold integration
(or set of M -dimensional vector samples) needed to evaluate Eq. (4.6-2) to a
one-dimensional integral (or set of scalar samples).

4.6.2 Capacity of Soft-Decision PPM: Specific Channel Models

4.6.2.1 Poisson Channel. We consider first the Poisson channel. The behav-
ior of the case Kb = 0 has a particularly simple form. When Kb = 0, we have
from Eqs. (4.2-17) and (4.2-18)

L(k) =
{

e−Ks k = 0
∞ k > 0

and Eq. (4.6-2) reduces to

C = (log2 M)
(
1 − e−Ks

)
bits/PPM symbol

When Kb = 0, only signal photons are detected. If any signal photons are
detected, the signal is known exactly. If no photons are detected, all M candidate
symbols are equally likely. Since the received statistic takes binary values, the
soft- and hard-decision capacities are equal.

When Kb > 0, we have L(k) = e−Ks (1 + [Ks/Kb])
k, and Eq. (4.6-2) be-

comes

C = log2(M)

(
1 − 1

log2 M
EY1,···,YM

log2

[
M∑
i=1

(
1 +

Ks

Kb

)(Yj−Y1)
])

which is expressed in bits/slot. The case Kb = 1 is illustrated in Fig. 4-24 as a
function of average power Pav = Ks/M for a range of M . In the plot, an average
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power constraint would be represented by a vertical line. A peak constraint
can be shown [77] to result in an upper limit on the PPM order. Hence, the
maximum data rate subject to both peak and average power constraints can be
identified using Fig. 4-24.

4.6.2.2 AWGN Channel. For the AWGN channel, the likelihood ratio re-
duces to

L(y) =
√

γ

β + γ
exp

[
βv2 + 2γ

√
βv − γβ

2(β + γ)

]

where v = (y − m0)/σ0 (recall β, γ are defined in Section 4.2.3). The capacity
reduces to

C = log2 M − E log2

M∑
j=1

exp

[
(Yj − Y1)

(
β(Yj + Y1) + 2γ

√
β
)

2(β + γ)

]

bits per PPM symbol, or, when σ2
1 = σ2

0 ,

C = log2 M − E log2

⎡
⎣ M∑

j=1

e
√

β(Yj−Y1)

⎤
⎦ bits/PPM symbol (4.6 4)
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4.6.3 Hard-Decision Versus Soft-Decision Capacity

The gap between hard- and soft-decision capacity for the optical channel
is not fixed, but varies with the channel model and operating conditions. For
example, the gap for the Poisson channel is zero when Kb = 0 (hard and soft
decisions are equivalent) and increases to several dB with increasing Kb. In this
section, we illustrate the gap for several channel models.

Figure 4-25 compares capacities for hard- and soft-decision AWGN chan-
nels for the case of M = 256. A similar comparison of capacities is shown in
Fig. 4-26 for the hard-output and soft-output WMC channels. The capacity
curves for both the AWGN and the WMC channels show that a minimum value
of ρb is reached at a nonzero code rate. Unlike the soft-output channels, which
exhibit monotonically better efficiency in terms of the bit-normalized SNR pa-
rameter ρb as the code rate (and hence the capacity per channel use) is reduced
toward zero, the bit-normalized SNR efficiency of the hard-output channel wors-
ens if the capacity is lowered below about 4 bits per channel use. This implies
that an optimum code rate of about 1/2 will achieve the lowest ρb for the hard-
output channel, while the soft-output channel achieves lowest ρb in the limit as
the code rate goes to 0.
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Another comparison of capacity for the hard-output and soft-output WMC
models is shown in Fig. 4-27, this time plotted versus n̄b. The hard-output
capacity in this figure is based on Eq. (4.6-1) and was computed in [14] for a
general WMC+Gaussian channel that also models the effects of thermal noise.

4.6.4 Losses Due to Using PPM

What loss is incurred by restricting the modulation to PPM? PPM is es-
sentially a binary modulation code with a duty cycle 1/M , and a single pulse
(binary 1) in each (synchronized) window of M slots. Suppose we were to replace
PPM with a binary modulation code with duty cycle 1/M but no constraint on
the distribution of pulses. What gains are available by allowing an arbitrary
pulse distribution?

The capacity of a memoryless channel with input restricted to duty cy-
cle 1/M is
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COOK =
1
M

EY log
fY |X(Y |0)

fY (Y )
+

M − 1
M

EY log
fY |X(Y |1)

fY (Y )
(4.6 5)

where

fY (y) =
1
M

fY |X(y|0) +
M − 1

M
fY |X(y|1)

is the probability mass function for a randomly chosen slot.

Let C∗ be the capacity of the PPM channel optimized over the choice of PPM
order (PPM orders are implicitly constrained to be powers of 2), and C∗

OOK the
capacity of the duty-cycle-constrained channel optimized over the duty cycle (the
duty cycle may take any positive real value). Figure 4-28 illustrates C∗

OOK/C∗

for the Poisson channel as a function of the average power for a range of back-
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'

ground noise levels. This represents the potential gain in using an arbitrary duty-
cycle constraint relative to PPM. The gains are larger for high average power,
corresponding to small PPM orders, and for smaller background noise levels.
We can potentially double the capacity for moderate to high average power.
We note, however, in this discussion we have not specified codes that achieve
arbitrary duty cycles. There are systematic methods to construct such codes,
e.g., [78], but we will not explore their use here. We provide the results shown
in Fig. 4-28 to demonstrate regions where their use should be explored. Since
the deep-space optical channel is typically in the lower average power regime
and losses in constraining the modulation to PPM are small in this area, in the
remainder of the chapter we focus on results for PPM.

4.6.5 Capacity of the Binary Channel with Quantum Detection

The capacity of the binary OOK channel with quantum detection and with
no external noise has been determined in [75]. Note that for the “noiseless”
quantum model photon counting leads to an erasure channel whereas optimum
quantum decoding results in a binary symmetric channel (BSC). For an arbi-
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trary rotation of the measurement states with respect to the signal states, as
described in [75], the transition probabilities are not equal, and, hence, a gen-
eralized (asymmetric) binary channel model must be considered. The capacity
of the binary channel can be found by computing the mutual information be-
tween input and output for each rotation of the measurement states, starting
with photon counting where one of the measurement states is aligned with the
ground state, and computing the mutual information as a function of symbol
input probability, β, for each rotation away from this configuration. For each
rotation, the maximum of the mutual information as a function of β is recorded.
The global maximum of the mutual information over all input probabilities and
rotations is the capacity of the binary channel.

The input alphabet is denoted by A, and the output alphabet is denoted
by B. The input alphabet consists of the two symbols a1 = 0 and a2 = 1.
Likewise, the output can take on one of two values, namely b1 = 0 and b2 =
1. The probability that a 0 is transmitted is β, whereas the probability of a
transmitted 1 is 1 − β ≡ β. The probability that b2 is received (given that a1

was transmitted) is p, while the probability that b1 is received (given that a2

was transmitted) is q.

The mutual information for this binary channel can be expressed as

I(A;B) =
[(

βp̄ + βq
)
log

(
1

βp̄ + βq

)
+

(
βp + βq̄

)
log

(
1

βp + βq̄

)]

−
[
β

(
p log

1
p

+ p̄ log
1
β

)
+ β

(
q log

1
q

+ q̄ log
1
q̄

)]
(4.6 6)

Note that the mutual information of the erasure and the BSC can be obtained
by setting p = 0 and p = q, respectively.

The capacity of the quantum channel was determined by starting with a
rotation angle of zero between the ground state and its measurement state (cor-
responding to photon counting, as we have shown above), and computing the
mutual information defined in Eq. (4.6-6) as a function of β, 0 ≤ β ≤ 1 for
each rotation in the signal plane, until the measurement state corresponds to
the signal state. Since different rotations yield different projections onto the
measurement states, the values of p and q change with each rotation.

Examples of mutual information and capacity for the binary channel with
OOK modulation are shown in Fig. 4-29, as a function of the input probability β,
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quantum and "classical" detection.

Photon-Counting Detector, b = 0.61 bits/binit

(Z-Channel, No Rotation)

Ks = 0.5 photons

Optimum Quantum Measurement; C = 0.7 bits/binit

(BSC, 18 deg Rotation)

for an average value of one photon per symbol (or two photons per signal pulse).
Only the limiting cases of optimum quantum measurement and photon count-
ing are included. The error probabilities are approximately 0.1025 and 0.18 for
quantum and direct detection, respectively. The global maximum value of mu-
tual information was found to occur with optimum quantum measurement, at
an input probability of β = 0.5. With photon-counting detection, for which
the asymmetric z-channel is the correct representation, the maximum mutual
information occurs at a higher value of input probability, namely at β = 0.55.
The value of the maximum mutual information was found to be 0.7 bits/binit
for quantum detection and 0.61 bits/binit for photon counting, verifying that
optimum quantum detection achieves higher capacity.

4.7 Channel Codes for Optical Modulations
The constrained codes, or modulations, introduced in Section 4.3 enforce

physical constraints and achieve desired peak-to-average power ratios, but their
performance is far from the theoretical limits given in Section 4.6. In this section,
we examine the application of Reed–Solomon, convolutional, turbo-like serial and
parallel concatenated codes, and low-density parity check (LDPC) codes to the
optical channel.
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4.7.1 Reed–Solomon Codes

Since their introduction in 1960, Reed–Solomon (RS) codes [79] have become
one of the most ubiquitous error-correcting codes. They have found applications
in storage devices (tape, compact disk, digital video disc), bar codes, wireless
communications (cellular telephones, deep-space RF communications), digital
television, and high speed modems (digital subscriber line, DSL), in addition to
optical communications.

An RS(n, k) code is a linear block code which encodes every block of k data
symbols into n code symbols, where each symbol is an element of the Galois field
with q = n + 1 elements, denoted GF(q) [79]. Most commonly, q is a power of 2,
q = 2s, in which case each symbol is conveniently represented by s bits. Thus,
the code can also be viewed as a (sn, sk) binary code.

In systematic form, a codeword of RS(n, k) contains k systematic (unchanged
data) symbols and n− k parity symbols. RS codes are maximum distance sepa-
rable, meaning that they have the largest minimum distance, dmin = n − k + 1,
among all linear (n, k) codes defined over GF(q). In some sense then, RS codes
are optimal for their block length.2 An RS(n, k) code can correct any pattern of
t = (dmin − 1)/2 = (n − k)/2 errors; alternatively, it can correct any pattern of
2t erasures.

The encoder for RS codes operates as follows. The sk-bit message at the
input to the RS encoder can be written as coefficients of a polynomial of degree
k − 1:

u(X) = u0 + u1X + u2X
2 + · · · + uk−1X

k−1 (4.7 1)

where each ui is an element of GF(q), i.e., an s-bit block. An RS code has an
associated generator polynomial

g(X) = (X − α)(X − α2) · · · (X − αn−k)

= g0 + g1X + g2X
2 + · · · + gn−k−1X

n−k−1 + Xn−k

2 However, an equivalent block-length code could have a higher minimum distance. For ex-
ample, RS(255,223) has dmin = 33, the largest possible for this length code over GF(256).
The same RS code could be viewed as a (255× 8, 223× 8) = (2040, 1784) binary code, which
is not necessarily a maximum distance separable code over GF(2), i.e., there could be other
(2040,1784) binary codes with larger minimum distances.
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where α is a primitive element of GF(q), and for each i, gi is an element of
GF(q). The parity symbols are the coefficients of the remainder

p(X) = p0 + p1X + p2X
2 + · · · + pn−k−1X

n−k−1 (4.7 2)

that results from dividing u(X)Xn−k by g(X). There are efficient hardware
implementations of this operation using shift registers [79]. To decode RS codes,
n − k syndromes are computed by dividing the received polynomial by X + αi,
i ∈ {1, · · · , n−k}. Then Berlekamp’s algorithm is used to find the error-location
polynomial, and the corrected values in the error-locations can be computed [79].

RS codes naturally fit the nonbinary nature of PPM signaling [21,30,31]. One
can use RS(n, k) with M -PPM, M = n+1, by assigning each RS code symbol to
one PPM symbol. When system constraints push one towards small M , this leads
to small block length codes, which have limited coding gain, but this problem
can be overcome by using a longer RS code and splitting RS code symbols across
multiple PPM symbols.

If each of the n PPM symbols contains a received laser pulse in one of M slots,
of average photon-energy Ks photons, the information rate for RS codewords is
given by ρ = ks/nKs = r(s/Ks) bits/photon, where r = k/n is the code rate.

4.7.2 Turbo and Turbo-Like Codes for Optical Modulations

For a fixed rate k/n, the performance of a code (e.g., the achievable bit
error rate as a function of signal power), roughly speaking, increases with n,
the block length of the code. However, the complexity of ML decoding of the
code increases with the block length as well. For example, complexity increases
quadratically in the block length with RS codes, making their implementation
prohibitively complex for very large block lengths.

Turbo-like serial and parallel concatenated codes, decoded iteratively,
achieve a large effective block length while providing low complexity near ML
decoding. In this section, we discuss recent studies applying turbo and turbo-like
codes to the deep-space, or free space, optical channel.

4.7.2.1 Parallel Concatenated (Turbo) Codes. A turbo code, or parallel
concatenated convolutional code, preceding a PPM modulator has been proposed
in [33,49]. The turbo code is a binary code, and its outputs are gathered and
mapped to PPM symbols using the method described in Section 4.3.2. The turbo
code can be viewed as an outer code Co and the modulation as an inner code Ci.
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To decode such a code effectively, the decoder needs more than the hard
M -PPM symbol decisions that are used for RS-coded PPM. A turbo decoder
takes from the receiver the set of M soft statistics corresponding to the slots,
from which it can compute the likelihood of any symbol, and ultimately, the
likelihood of each bit used to form the M -ary symbol. This is used to initialize
the binary symbol likelihoods that a turbo decoding algorithm would use for
conventional BPSK, as described in [80–82].

Turbo-coded PPM has been shown to offer improvements of 0.5 to 1 dB over
RS-coded PPM, when the PPM size is 256 and WMC-plus-Gaussian statistics
are assumed. Some additional improvement could be expected by updating the
binary symbol likelihoods that are input to the turbo decoder with each new
iteration. That is the approach taken in the next section, which also uses a
single convolutional code instead of a parallel concatenation of convolutional
codes.

4.7.2.2 Serially Concatenated Codes with Iterative Decoding. Modu-
lation is a mapping of bits to symbols transmitted on the channel. This mapping
may be considered a code and demodulation a decoding of the code. Convention-
ally, the modulation and ECC are decoded independently, with the demodulator
sending its results to the ECC decoder. However, we may consider the combi-
nation of the modulation and the ECC as a single large code that maps user
information bits directly to the symbols transmitted on the channel. We could
gain several dB in performance by decoding the ECC and modulation jointly as
a single code relative to decoding them independently.

An exact ML decoding of the joint modulation–ECC code would, in most
cases of practical interest, be prohibitively complex. However, we may approx-
imate true ML decoding while limiting the decoder complexity by iteratively
decoding the modulation and the ECC. Iterative decoding is described in more
detail in [80]. Applications of iterative decoding to the deep-space optical channel
may be found in [84].

The PPM mapping may be preceded by a binary accumulator, making the
inner code recursive. We refer to the inner code that is formed by the concatena-
tion of a binary accumulator and PPM mapping as accumulate-PPM (APPM),
illustrated in Fig. 4-30. The accumulator performs an exclusive-OR operation
with the input bit and the previous output of the accumulator. This introduces
memory in the modulator, which can be helpful in conjunction with an outer
code.
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Fig. 4-30.  APPM signaling.
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4.8 Performance of Coded Optical Modulations
The prior sections have provided us with statistical models of the channel

(Section 4.2), practical modulation formats for these channels that are physi-
cally realizable (Sections 4.3 and 4.4), the performance of the uncoded mod-
ulation (Section 4.5), the capacity of the channel when using this modulation
(Section 4.6), and error correction codes suitable for concatenation with the mod-
ulation (Section 4.7). We now have all the pieces necessary to design a coded
modulation for a particular channel and to measure its performance. In this
section we provide general guidelines for this choice and illustrate performance
measurements. Our running example will be the Poisson channel. The analysis
would carry through in an analogous manner for other channel models.

4.8.1 Parameter Selection

In the absence of other constraints, we first choose to use the PPM order
that maximizes the capacity for the available signal power. Other constraints
are considered elsewhere [35–39,44–46]. For example, suppose our channel is
Poisson with Kb = 1 and we have an average signal power of Ks/M = 0.0541
signal photons per slot. From Fig. 4-24, we find the the maximum capacity is
56 megabits (Mb) per slot, achieved by taking M = 64. Let M∗ be the optimum
choice of M . Figure 4-31 illustrates M∗ constrained to be a power of two as a
function of average power for the Poisson channel with Kb ∈ {0, 0.01, 0.1, 1.0, 10}.
Discontinuities correspond to switching the order and are shown as vertical lines.
The optimal order is increasing in Kb and decreasing in Pav, showing that as
channel conditions become worse, the channel is used efficiently by moving to
higher orders, increasing the peak power for a given average power. As channel
conditions improve, we may increase the throughput by lowering the peak power
and transmitting pulses more frequently (for the same average power).

Given the PPM order M∗, we choose the ECC code rate to satisfy
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Figure 4-32 illustrates the ECC rate as a function of average power for several
background levels on the Poisson channel. The discontinuities, corresponding to
switching the order, obscure the general behavior. The behavior of the rate can
be seen more clearly by allowing M∗ to be real-valued. Let M∗

OOK specify the
duty cycle of the modulation that maximizes Eq. (4.6-5). The upper bound on
the rate of a modulation with duty cycle 1/M∗

OOK is given by

h (M∗
OOK) =

1
M∗

OOK

log2 M∗
OOK +

M∗
OOK − 1
M∗

OOK

log2

(
M∗

OOK

M∗
OOK − 1

)

bits per slot. The capacity and duty cycle may be used to specify an ECC data
rate as

ROOK =
C∗

OOK

h (M∗
OOK)

which is shown in Fig. 4-33 for the Poisson channel with Kb ∈ {0, 0.01, 0.1, 1, 10}.
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4.8.2 Estimating Performance

We can save simulation time and gain insight by analytically determining
the performance of coded modulation schemes. Such analysis is well known for
RS codes and has been recently developed for iterative decoding schemes. An
extensive discussion is beyond the scope of this chapter. We give a brief overview
of the analysis in the following.

4.8.2.1 Reed–Solomon Codes. With hard-decision decoding, symbol deci-
sions are made and sent to the RS decoder, which corrects all patterns of t or
fewer errors. With p denoting the input channel symbol error probability, the
probability of symbol error is approximated by the following expression:

Ps ≈ (2m − 1)−1
N∑

k=t+1

k

(
N
k

)
pk(1 − p)N−k (4.8 1)

This expression holds for channel conditions dominated by symbol errors, rather
than erasures. However, when channel conditions are dominated by symbol
erasures, rather than symbol errors, the performance of the RS decoder improves.

An erasure RS decoder does not make undetected errors. That is, either
the number of erasures in a received word is dmin or less, in which case the
codeword is decoded correctly, or there are more than dmin erasures, in which
case the decoder announces that the number of erasures is too large to decode
properly.

The codeword error rate of an (n, k) RS code used with M -PPM on an
erasure channel is (see, e.g., [21,79])

Pw =
n∑

j=dmin

(
n

j

)
P j

s (1 − Ps)n−j (4.8 2)

where dmin = n − k + 1 is the minimum distance of the code, and Ps is the
symbol erasure rate as discussed in Section 4.5.2.

When a decoder error occurs, with high probability a minimum distance
codeword is chosen. Since code symbols are equally likely to be in error with an
RS code, approximately (n − k + 1)/n information symbols are decoded incor-
rectly. On average, half the bits that map to a symbol will be in error, hence
the bit error rate may be approximated by [20]
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Pb ≈
1
2

n − k + 1
n

Pw (4.8 3)

Performance results for RS-encoded PPM symbols on the erasure chan-
nel have been computed in [4] and reproduced in Fig. 4-34 for the case M =
16, 32, 64, and 128, with k = M/2, N = M − 1, and dmin = (M/2) − 1.

Conventionally, RS decoders have operated on hard decisions from the re-
ceiver due to the complexity of computing maximum-likelihood estimates from
soft decisions. However, recent results have demonstrated efficient decoding of
RS codes using soft-decision inputs, improving their performance.

With soft-decision decoding, the ML decoder selects the RS codeword with
the highest metric. For the case of Poisson detection, the optimum metric con-
sists of the sum of slot counts corresponding to each codeword. For example, if
a particular codeword consisted of a laser pulse in the first slot of every PPM
symbol, then the metric corresponding to that codeword would be obtained by
adding up the detected counts from the first slot of every symbol. Although
exact error probabilities are difficult to compute, useful bounds on the proba-
bility of codeword error have been derived [83]. For the case of soft-decision
decoding, an upper bound on the probability of codeword error (PWE) can be
found by a direct application of the union bound. Since the premise of the union
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bound is that the exact error probability never exceeds the sum of pairwise error
probabilities, we can write

Pw ≤
n∑

k=dmin

L(k, n)Pk (4.8 4)

where Pk is the probability of committing an error when attempting to decide
between two codewords a distance k apart, and L(k, n) is the codeword enumer-
ator function that specifies the number of codewords that are a distance k apart,
with a code of length n. For RS codes the enumerator function is of the form

L(k, n) =
n−dmin∑
j=n−k

(−1)j+k−n

(
j

N − k

)(
n

j

) (
Mn−dmin+1−j − 1

)
(4.8 5)

where the index k takes on the values k = dmin, dmin + 1, · · ·n. Plots of Pb as
a function of n, for various average signal counts, and with Kb = 1 photon/slot,
have been computed in [83].

4.8.2.2 Iterative Codes. The bit-error-rate versus average-power curve of a
typical iterative code may be roughly divided into three regions (moving from
left to right, or from low average power to high average power): a flat high error
rate region, a “waterfall” region, and an “error floor” region. This behavior
arises since typical iterative codes have a small minimum distance, hence an
error floor, but low multiplicity, hence the waterfall region when (approximately)
ML decoded. Recent results have illustrated methods to accurately predict the
location of the waterfall and error floor.

The waterfall region may be predicted by SNR input–output diagrams, e.g.,
[85], or extrinsic information transfer (EXIT) curve charts, e.g., [86]. The error
floor may be predicted from the first few terms of the weight enumerator poly-
nomial and is ultimately dominated by the minimum distance and multiplicity
of the minimum-weight codewords, e.g., [87].

4.8.3 Achievable Data Rates Versus Average Signal Power

In this section we present a sample code and modulation design, leading to
a family of trade-offs of achievable data rate versus average signal power.

Suppose we have a system with a slot width of 1 ns and background noise
Kb = 1.0. We would like to find the power required to achieve 56 megabits
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per second (Mbps) and choose appropriate coding and modulation. From
Fig. 4-24, we find the optimum PPM order to achieve this data rate is M = 64,
and the minimum required Ks/M = 0.0541. To achieve 56 Mbps, we choose
a rate R = 0.6 ≈ 0.056/(log2(M)/M) ECC and concatenate it with 64-PPM.
The performance of two candidate ECCs for this operating point, a serially con-
catenated convolutionally coded PPM, with outer code rate 3/5, and a 16,410-
bit interleaver [SCPPM(3/5, 2, 64, 16410)] and Reed–Solomon coded PPM with
n = 4095, k = 2457, and M = 64 [RSPPM(4095, 2457, 64)], are illustrated in
Fig. 4-35.

Performance is compared with the lower bound on the bit error rate for a
code with rate R, arrived at by application of the converse to the coding theorem
[66, Theorem 7.2.2]:

Pb ≥ H−1

(
1 − C

R

)
(4.8 6)
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where H−1 is the inverse of the entropy function and C is the channel capacity.
Unless otherwise noted, comparisons are made for bit error rates of 10−6.

Figure 4-35 illustrates the bound in Eq. (4.8-6) for C = 5.6 Mbps as well
as uncoded M = 64 performance, which, since it carries no coding redundancy,
yields 9.4 Mbps. The SCPPM code operates 0.5 dB from capacity, the RS
code operates 2.5–3 dB from capacity, and uncoded PPM operates 7.2 dB from
capacity (at 5.6 Mbps). An appropriate comparison for uncoded 64-PPM is with
capacity for 9.4 Mbps, from which uncoded performance is 4.7 dB. (It would be
more efficient to achieve 9.4 Mbps with a rate 3/5 code mapped to 32-PPM).

These comparisons may be extended over a range of desired rates.
Figure 4-36 illustrates achievable rates for Kb = 1 populated by points cor-
responding to the class of SCPPM codes, the class of RSPPM codes, and the
uncoded PPM channel. The coded and uncoded channels are evaluated at a
finite number of rates, which we connect in a line for illustration—this is justi-
fiable by allowing time sharing. RSPPM points use the convention n = M − 1,
although there is some degradation in using this convention for small M . For
example, with M = 64, we illustrate a family of points where the RS code sym
bol length is allowed to span multiple PPM symbols (as is done in Fig. 4-35).
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Points correspond to the average power at which the BER is 10−6. We exclude
iterative codes that exhibit error floors at BERs greater than 10−6.

The class of SCPPM codes lies approximately 0.5 dB from capacity, while
the class of RSPPM codes lies approximately 2.75 dB from capacity, and uncoded
performance is 4.7 dB from capacity. These gaps will vary with Kb, but they
provide a good approximation over a range of expected background noise levels.
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Notation

Systems Parameters

R = Data rate, bits/second

ρ = Photon efficiency, bits/photon

ns = Rate of photons incident on detector, photons/second)

Pb = Probability of bit error (BER)

Ps = Probability of symbol error (SER)

Pc = Probability of correct detection

X = Value (typically binary) transmitted during a time slot

Y = Real value at output of detector

m, σ2 = Mean, variance of Y

fY |X(y|0) = Conditional probability density (or mass) function of Y

given X = 0

fY |X(y|1) = Conditional probability density (or mass) function of Y

given X = 1

m0, m1 = Conditional mean of Y given X = 0 or 1

σ2
0 , σ2

1 = Conditional variance of Y given X = 0 or 1

Ks = Average number of absorbed signal photons per pulse

Kb = Average number of absorbed background photons per slot

β = Slot SNR, (m1 − m0)2/σ2

γ = Excess slot SNR, (m1 − m0)2/σ2
1 − σ2

0

βb = Bit SNR, β/(2Rc)

Laser and Modulator Parameters

ν = Optical frequency, nanometers

M= PPM order

Ts = Width of the signal slot, seconds
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Detector Parameters

η = Quantum efficiency

keff = Ionization ratio

F = Excess noise factor, keffG + (2 − 1/G)(1 − keff )

Ib = Bulk leakage current, amperes

Is = Surface leakage current, amperes

T = Noise temperature, kelvins

RL = Load resistance (transimpedance model), 5.75 × 1012 × Ts ohms

B = Noise equivalent one-sided bandwidth, hertz

G = Gain

Physical Constants

κ = Boltzmann’s constant, 1.38 × 10−23 joules/kelvin

q = Electron charge, 1.6 × 10−19 coulombs

h = Planck’s constant, 6.624 × 10−34 joules/hertz


